September  2015, 7(3): 255-280. doi: 10.3934/jgm.2015.7.255

Hypersymplectic structures on Courant algebroids

1. 

CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal, Portugal

Received  January 2015 Revised  June 2015 Published  July 2015

We introduce the notion of hypersymplectic structure on a Courant algebroid and we prove the existence of a one-to-one correspondence between hypersymplectic and hyperkähler structures. This correspondence provides a simple way to define a hyperkähler structure on a Courant algebroid. We show that hypersymplectic structures on Courant algebroids encompass hypersymplectic structures with torsion on Lie algebroids. In the latter, the torsion existing at the Lie algebroid level is incorporated in the Courant structure. Cases of hypersymplectic structures on Courant algebroids which are doubles of Lie, quasi-Lie and proto-Lie bialgebroids are investigated.
Citation: Paulo Antunes, Joana M. Nunes da Costa. Hypersymplectic structures on Courant algebroids. Journal of Geometric Mechanics, 2015, 7 (3) : 255-280. doi: 10.3934/jgm.2015.7.255
References:
[1]

P. Antunes, Crochets de Poisson Gradués et Applications: Structures Compatibles et Généralisations des Structures Hyperkählériennes,, Ph.D thesis, (2010).   Google Scholar

[2]

P. Antunes, C. Laurent-Gengoux and J. M. Nunes da Costa, Hierarchies and compatibility on Courant algebroids,, Pac. J. Math., 261 (2013), 1.  doi: 10.2140/pjm.2013.261.1.  Google Scholar

[3]

P. Antunes and J. M. Nunes da Costa, Hyperstructures on Lie algebroids,, Rev. in Math. Phys., 25 (2013).  doi: 10.1142/S0129055X13430034.  Google Scholar

[4]

P. Antunes and J. M. Nunes da Costa, Induced hypersymplectic and hyperkähler structures on the dual of a Lie algebroid,, Int. J. Geom. Meth. Mod. Phys., 11 (2014).  doi: 10.1142/S0219887814600305.  Google Scholar

[5]

P. Antunes and J. M. Nunes da Costa, Hyperstructures with torsion on Lie algebroids, preprint,, , ().   Google Scholar

[6]

H. Bursztyn, G. Cavalcanti and M. Gualtieri, Generalized Kähler and hyper-Kähler quotients,, in Poisson geometry in mathematics and physics, 450 (2008), 61.  doi: 10.1090/conm/450/08734.  Google Scholar

[7]

P. S. Howe and G. Papadopoulos, Twistor spaces for hyper-Kähler manifolds with torsion,, Phys. Lett. B, 379 (1996), 80.  doi: 10.1016/0370-2693(96)00393-0.  Google Scholar

[8]

J. Grabowski, Courant-Nijenhuis tensors and generalized geometries,, in Groups, 29 (2006), 101.   Google Scholar

[9]

N. Hitchin, Generalized Calabi-Yau manifolds,, Q. J. Math., 54 (2003), 281.  doi: 10.1093/qmath/hag025.  Google Scholar

[10]

Y. Kosmann-Schwarzbach, Quasi, twisted, and all that ... in Poisson geometry and Lie algebroid theory,, in The Breadth of symplectic and Poisson geometry, (2005), 363.  doi: 10.1007/0-8176-4419-9_12.  Google Scholar

[11]

Y. Kosmann-Schwarzbach, Poisson and symplectic functions in Lie algebroid theory,, in Higher Structures in Geometry and Physics, (2011), 243.  doi: 10.1007/978-0-8176-4735-3_12.  Google Scholar

[12]

D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids,, in Quantization, (2002), 169.  doi: 10.1090/conm/315/05479.  Google Scholar

[13]

D. Roytenberg, Quasi-Lie bialgebroids and twisted Poisson manifolds,, Lett. Math. Phys., 61 (2002), 123.  doi: 10.1023/A:1020708131005.  Google Scholar

[14]

M. Stiénon, Hypercomplex structures on Courant algebroids,, C. R. Acad. Sci. Paris, 347 (2009), 545.  doi: 10.1016/j.crma.2009.02.020.  Google Scholar

[15]

T. Voronov, Graded manifolds and Drinfeld doubles for Lie bialgebroids,, in Quantization, (2002), 131.  doi: 10.1090/conm/315/05478.  Google Scholar

[16]

P. Xu, Hyper-Lie Poisson structures,, Ann. Sci. École Norm. Sup., 30 (1997), 279.  doi: 10.1016/S0012-9593(97)89921-1.  Google Scholar

show all references

References:
[1]

P. Antunes, Crochets de Poisson Gradués et Applications: Structures Compatibles et Généralisations des Structures Hyperkählériennes,, Ph.D thesis, (2010).   Google Scholar

[2]

P. Antunes, C. Laurent-Gengoux and J. M. Nunes da Costa, Hierarchies and compatibility on Courant algebroids,, Pac. J. Math., 261 (2013), 1.  doi: 10.2140/pjm.2013.261.1.  Google Scholar

[3]

P. Antunes and J. M. Nunes da Costa, Hyperstructures on Lie algebroids,, Rev. in Math. Phys., 25 (2013).  doi: 10.1142/S0129055X13430034.  Google Scholar

[4]

P. Antunes and J. M. Nunes da Costa, Induced hypersymplectic and hyperkähler structures on the dual of a Lie algebroid,, Int. J. Geom. Meth. Mod. Phys., 11 (2014).  doi: 10.1142/S0219887814600305.  Google Scholar

[5]

P. Antunes and J. M. Nunes da Costa, Hyperstructures with torsion on Lie algebroids, preprint,, , ().   Google Scholar

[6]

H. Bursztyn, G. Cavalcanti and M. Gualtieri, Generalized Kähler and hyper-Kähler quotients,, in Poisson geometry in mathematics and physics, 450 (2008), 61.  doi: 10.1090/conm/450/08734.  Google Scholar

[7]

P. S. Howe and G. Papadopoulos, Twistor spaces for hyper-Kähler manifolds with torsion,, Phys. Lett. B, 379 (1996), 80.  doi: 10.1016/0370-2693(96)00393-0.  Google Scholar

[8]

J. Grabowski, Courant-Nijenhuis tensors and generalized geometries,, in Groups, 29 (2006), 101.   Google Scholar

[9]

N. Hitchin, Generalized Calabi-Yau manifolds,, Q. J. Math., 54 (2003), 281.  doi: 10.1093/qmath/hag025.  Google Scholar

[10]

Y. Kosmann-Schwarzbach, Quasi, twisted, and all that ... in Poisson geometry and Lie algebroid theory,, in The Breadth of symplectic and Poisson geometry, (2005), 363.  doi: 10.1007/0-8176-4419-9_12.  Google Scholar

[11]

Y. Kosmann-Schwarzbach, Poisson and symplectic functions in Lie algebroid theory,, in Higher Structures in Geometry and Physics, (2011), 243.  doi: 10.1007/978-0-8176-4735-3_12.  Google Scholar

[12]

D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids,, in Quantization, (2002), 169.  doi: 10.1090/conm/315/05479.  Google Scholar

[13]

D. Roytenberg, Quasi-Lie bialgebroids and twisted Poisson manifolds,, Lett. Math. Phys., 61 (2002), 123.  doi: 10.1023/A:1020708131005.  Google Scholar

[14]

M. Stiénon, Hypercomplex structures on Courant algebroids,, C. R. Acad. Sci. Paris, 347 (2009), 545.  doi: 10.1016/j.crma.2009.02.020.  Google Scholar

[15]

T. Voronov, Graded manifolds and Drinfeld doubles for Lie bialgebroids,, in Quantization, (2002), 131.  doi: 10.1090/conm/315/05478.  Google Scholar

[16]

P. Xu, Hyper-Lie Poisson structures,, Ann. Sci. École Norm. Sup., 30 (1997), 279.  doi: 10.1016/S0012-9593(97)89921-1.  Google Scholar

[1]

David Li-Bland, Pavol Ševera. Integration of exact Courant algebroids. Electronic Research Announcements, 2012, 19: 58-76. doi: 10.3934/era.2012.19.58

[2]

Benoît Jubin, Norbert Poncin, Kyosuke Uchino. Free Courant and derived Leibniz pseudoalgebras. Journal of Geometric Mechanics, 2016, 8 (1) : 71-97. doi: 10.3934/jgm.2016.8.71

[3]

Dmitry Jakobson, Alexander Strohmaier, Steve Zelditch. On the spectrum of geometric operators on Kähler manifolds. Journal of Modern Dynamics, 2008, 2 (4) : 701-718. doi: 10.3934/jmd.2008.2.701

[4]

Carlos Kenig, Tobias Lamm, Daniel Pollack, Gigliola Staffilani, Tatiana Toro. The Cauchy problem for Schrödinger flows into Kähler manifolds. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 389-439. doi: 10.3934/dcds.2010.27.389

[5]

Gang Tian. Finite-time singularity of Kähler-Ricci flow. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1137-1150. doi: 10.3934/dcds.2010.28.1137

[6]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[7]

Meera G. Mainkar, Cynthia E. Will. Examples of Anosov Lie algebras. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 39-52. doi: 10.3934/dcds.2007.18.39

[8]

André Caldas, Mauro Patrão. Entropy of endomorphisms of Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1351-1363. doi: 10.3934/dcds.2013.33.1351

[9]

Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517

[10]

Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-15. doi: 10.3934/dcdss.2020066

[11]

K. C. H. Mackenzie. Drinfel'd doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids. Electronic Research Announcements, 1998, 4: 74-87.

[12]

Juan Carlos Marrero, D. Martín de Diego, Diana Sosa. Variational constrained mechanics on Lie affgebroids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 105-128. doi: 10.3934/dcdss.2010.3.105

[13]

Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121

[14]

Jorge Cortés, Manuel de León, Juan Carlos Marrero, Eduardo Martínez. Nonholonomic Lagrangian systems on Lie algebroids. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 213-271. doi: 10.3934/dcds.2009.24.213

[15]

Dennise García-Beltrán, José A. Vallejo, Yurii Vorobiev. Lie algebroids generated by cohomology operators. Journal of Geometric Mechanics, 2015, 7 (3) : 295-315. doi: 10.3934/jgm.2015.7.295

[16]

Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014

[17]

Eduardo Martínez. Classical field theory on Lie algebroids: Multisymplectic formalism. Journal of Geometric Mechanics, 2018, 10 (1) : 93-138. doi: 10.3934/jgm.2018004

[18]

Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977

[19]

Velimir Jurdjevic. Affine-quadratic problems on Lie groups. Mathematical Control & Related Fields, 2013, 3 (3) : 347-374. doi: 10.3934/mcrf.2013.3.347

[20]

Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]