September  2015, 7(3): 295-315. doi: 10.3934/jgm.2015.7.295

Lie algebroids generated by cohomology operators

1. 

Departamento de Matemáticas, Universidad de Sonora, Blvd. Encinas y Rosales, Edi cio 3K-1, Hermosillo, Son 83000, Mexico

2. 

Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Lat. Av. Salvador Nava s/n Col. Lomas, San Luis Potosí, SLP 78290, Mexico

3. 

Departamento de Matemáticas, Universidad de Sonora, Blvd. Encinas y Rosales, Edificio 3K-1, Hermosillo, Son 83000, Mexico

Received  October 2014 Revised  May 2015 Published  July 2015

By studying the Frölicher-Nijenhuis decomposition of cohomology operators (that is, derivations $D$ of the exterior algebra $\Omega (M)$ with $\mathbb{Z}-$degree $1$ and $D^2=0$), we describe new examples of Lie algebroid structures on the tangent bundle $TM$ (and its complexification $T^{\mathbb{C}}M$) constructed from pre-existing geometric ones such as foliations, complex, product or tangent structures. We also describe a class of Lie algebroids on tangent bundles associated to idempotent endomorphisms with nontrivial Nijenhuis torsion.
Citation: Dennise García-Beltrán, José A. Vallejo, Yurii Vorobiev. Lie algebroids generated by cohomology operators. Journal of Geometric Mechanics, 2015, 7 (3) : 295-315. doi: 10.3934/jgm.2015.7.295
References:
[1]

W. Ambrose, R. S. Palais and I. M. Singer, Sprays,, An. Acad. Bras. Cie., 32 (1960), 163.   Google Scholar

[2]

A. D. Blaom, Geometric structures as deformed infinitesimal symmetries,, Trans. Amer. Math. Soc., 358 (2006), 3651.  doi: 10.1090/S0002-9947-06-04057-8.  Google Scholar

[3]

F. Cantrijn, J. Cariñena, J. Crampin and L. Ibort, Reduction of degenerate Lagrangian systems,, J. Geom. Phys., 3 (1986), 353.  doi: 10.1016/0393-0440(86)90014-8.  Google Scholar

[4]

J. Clemente-Gallardo, Applications of Lie algebroids in mechanics and control theory,, in Nonlinear control in the Year 2000, 258 (2001), 299.  doi: 10.1007/BFb0110222.  Google Scholar

[5]

M. Crainic and R. L. Fernandes, Lectures on integrability of Lie brackets,, Geometry and Topology Monographs, 17 (2011), 1.  doi: 10.2140/gtm.2011.17.1.  Google Scholar

[6]

M. Crainic and I. Moerdijk, Deformations of Lie brackets: Cohomological aspects,, J. Eur. Math. Soc., 10 (2008), 1037.  doi: 10.4171/JEMS/139.  Google Scholar

[7]

M. Crampin, On the differential geometry of the Euler-Lagrange equations, and the inverse problem of Lagrangian dynamics,, J. Phys. A: Math. Gen., 14 (1981), 2567.  doi: 10.1088/0305-4470/14/10/012.  Google Scholar

[8]

L. De Andrés, M. De León and P. R. Rodrigues, Connections on tangent bundles of higher order associated to regular Lagrangians,, Geometriae Dedicata, 39 (1991), 17.  doi: 10.1007/BF00147300.  Google Scholar

[9]

M. De León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics,, North-Holland Mathematics Studies, 158 (1998).   Google Scholar

[10]

R. L. Fernandes, Lie algebroids, holonomy and characteristic classes,, Adv. in Math., 170 (2002), 119.  doi: 10.1006/aima.2001.2070.  Google Scholar

[11]

A. Frölicher and A. Nijenhuis, Theory of vector valued differential forms. Part I.,, Indagationes Math., 18 (1956), 338.  doi: 10.1016/S1385-7258(56)50046-7.  Google Scholar

[12]

J. Grabowski, Courant-Nijenhuis tensors and generalized geometries,, in Groups, 29 (2006), 101.   Google Scholar

[13]

J. Grabowski, Brackets,, Int. J. of Geom. Methods in Mod. Phys., 10 (2013).  doi: 10.1142/S0219887813600013.  Google Scholar

[14]

J. Grifone, Structure presque-tangente et connexions,, Ann. Inst. Fourier, 22 (1972), 287.  doi: 10.5802/aif.407.  Google Scholar

[15]

D. Husemöller, M. Joachim, B. Jurčo and M. Schottenloher, Basic Bundle Theory and $K-$Cohomology Invariants,, Lecture Notes in Physics, 726 (2008).  doi: 10.1007/978-3-540-74956-1.  Google Scholar

[16]

I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry,, 2nd edition, (1993).  doi: 10.1007/978-3-662-02950-3.  Google Scholar

[17]

Y. Kosmann-Schwarzbach and F. Magri, Poisson-Nijenhuis structures,, Annales de l'I.H.P., 53 (1990), 35.   Google Scholar

[18]

Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras,, Annales de l'Institut Fourier, 46 (1996), 1243.  doi: 10.5802/aif.1547.  Google Scholar

[19]

K. C. H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids,, London Math. Soc. Lec. Notes, 213 (2005).  doi: 10.2277/0521499283.  Google Scholar

[20]

E. Martínez, Lie algebroids in classical mechanics and optimal control,, SIGMA, 3 (2007).  doi: 10.3842/SIGMA.2007.050.  Google Scholar

[21]

P. W. Michor, Remarks on the Frölicher-Nijenhuis bracket,, Differential geometry and its applications (Brno, (1986), 197.   Google Scholar

[22]

J. Monterde and A. Montesinos, Integral curves of derivations,, Ann. of Global Anal. and Geom., 6 (1988), 177.  doi: 10.1007/BF00133038.  Google Scholar

[23]

A. Nijenhuis and R. Richardson, Deformation of Lie algebra structures,, J. Math. Mech., 17 (1967), 89.  doi: 10.1512/iumj.1968.17.17005.  Google Scholar

[24]

A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields I,, Indagationes Math., 17 (1955), 390.  doi: 10.1016/S1385-7258(55)50054-0.  Google Scholar

[25]

I. Vaisman, Cohomology and Differential Forms,, Marcel Dekker Inc., (1973).   Google Scholar

[26]

A. Weinstein, Lagrangian Mechanics and Groupoids,, in Mechanics Day, 7 (1996), 207.   Google Scholar

[27]

A. Weinstein, The Integration Problem for Complex Lie Algebroids,, in From Geometry to Quantum Mechanics, 252 (2007), 93.  doi: 10.1007/978-0-8176-4530-4\_7.  Google Scholar

show all references

References:
[1]

W. Ambrose, R. S. Palais and I. M. Singer, Sprays,, An. Acad. Bras. Cie., 32 (1960), 163.   Google Scholar

[2]

A. D. Blaom, Geometric structures as deformed infinitesimal symmetries,, Trans. Amer. Math. Soc., 358 (2006), 3651.  doi: 10.1090/S0002-9947-06-04057-8.  Google Scholar

[3]

F. Cantrijn, J. Cariñena, J. Crampin and L. Ibort, Reduction of degenerate Lagrangian systems,, J. Geom. Phys., 3 (1986), 353.  doi: 10.1016/0393-0440(86)90014-8.  Google Scholar

[4]

J. Clemente-Gallardo, Applications of Lie algebroids in mechanics and control theory,, in Nonlinear control in the Year 2000, 258 (2001), 299.  doi: 10.1007/BFb0110222.  Google Scholar

[5]

M. Crainic and R. L. Fernandes, Lectures on integrability of Lie brackets,, Geometry and Topology Monographs, 17 (2011), 1.  doi: 10.2140/gtm.2011.17.1.  Google Scholar

[6]

M. Crainic and I. Moerdijk, Deformations of Lie brackets: Cohomological aspects,, J. Eur. Math. Soc., 10 (2008), 1037.  doi: 10.4171/JEMS/139.  Google Scholar

[7]

M. Crampin, On the differential geometry of the Euler-Lagrange equations, and the inverse problem of Lagrangian dynamics,, J. Phys. A: Math. Gen., 14 (1981), 2567.  doi: 10.1088/0305-4470/14/10/012.  Google Scholar

[8]

L. De Andrés, M. De León and P. R. Rodrigues, Connections on tangent bundles of higher order associated to regular Lagrangians,, Geometriae Dedicata, 39 (1991), 17.  doi: 10.1007/BF00147300.  Google Scholar

[9]

M. De León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics,, North-Holland Mathematics Studies, 158 (1998).   Google Scholar

[10]

R. L. Fernandes, Lie algebroids, holonomy and characteristic classes,, Adv. in Math., 170 (2002), 119.  doi: 10.1006/aima.2001.2070.  Google Scholar

[11]

A. Frölicher and A. Nijenhuis, Theory of vector valued differential forms. Part I.,, Indagationes Math., 18 (1956), 338.  doi: 10.1016/S1385-7258(56)50046-7.  Google Scholar

[12]

J. Grabowski, Courant-Nijenhuis tensors and generalized geometries,, in Groups, 29 (2006), 101.   Google Scholar

[13]

J. Grabowski, Brackets,, Int. J. of Geom. Methods in Mod. Phys., 10 (2013).  doi: 10.1142/S0219887813600013.  Google Scholar

[14]

J. Grifone, Structure presque-tangente et connexions,, Ann. Inst. Fourier, 22 (1972), 287.  doi: 10.5802/aif.407.  Google Scholar

[15]

D. Husemöller, M. Joachim, B. Jurčo and M. Schottenloher, Basic Bundle Theory and $K-$Cohomology Invariants,, Lecture Notes in Physics, 726 (2008).  doi: 10.1007/978-3-540-74956-1.  Google Scholar

[16]

I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry,, 2nd edition, (1993).  doi: 10.1007/978-3-662-02950-3.  Google Scholar

[17]

Y. Kosmann-Schwarzbach and F. Magri, Poisson-Nijenhuis structures,, Annales de l'I.H.P., 53 (1990), 35.   Google Scholar

[18]

Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras,, Annales de l'Institut Fourier, 46 (1996), 1243.  doi: 10.5802/aif.1547.  Google Scholar

[19]

K. C. H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids,, London Math. Soc. Lec. Notes, 213 (2005).  doi: 10.2277/0521499283.  Google Scholar

[20]

E. Martínez, Lie algebroids in classical mechanics and optimal control,, SIGMA, 3 (2007).  doi: 10.3842/SIGMA.2007.050.  Google Scholar

[21]

P. W. Michor, Remarks on the Frölicher-Nijenhuis bracket,, Differential geometry and its applications (Brno, (1986), 197.   Google Scholar

[22]

J. Monterde and A. Montesinos, Integral curves of derivations,, Ann. of Global Anal. and Geom., 6 (1988), 177.  doi: 10.1007/BF00133038.  Google Scholar

[23]

A. Nijenhuis and R. Richardson, Deformation of Lie algebra structures,, J. Math. Mech., 17 (1967), 89.  doi: 10.1512/iumj.1968.17.17005.  Google Scholar

[24]

A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields I,, Indagationes Math., 17 (1955), 390.  doi: 10.1016/S1385-7258(55)50054-0.  Google Scholar

[25]

I. Vaisman, Cohomology and Differential Forms,, Marcel Dekker Inc., (1973).   Google Scholar

[26]

A. Weinstein, Lagrangian Mechanics and Groupoids,, in Mechanics Day, 7 (1996), 207.   Google Scholar

[27]

A. Weinstein, The Integration Problem for Complex Lie Algebroids,, in From Geometry to Quantum Mechanics, 252 (2007), 93.  doi: 10.1007/978-0-8176-4530-4\_7.  Google Scholar

[1]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[2]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[3]

Honglei Lang, Yunhe Sheng. Linearization of the higher analogue of Courant algebroids. Journal of Geometric Mechanics, 2020, 12 (4) : 585-606. doi: 10.3934/jgm.2020025

[4]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

[5]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[6]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[7]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[8]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[9]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[10]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[11]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[12]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[13]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[14]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[15]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (1)

[Back to Top]