March  2015, 7(1): 35-42. doi: 10.3934/jgm.2015.7.35

Finiteness of relative equilibria in the planar generalized $N$-body problem with fixed subconfigurations

1. 

140 Solon Campus Center, 1117 University Dr., UMD, Duluth, MN 55812-3000, United States

2. 

Department of Mathematics, Ny Munkegade 118, DK-8000, Aarhus, Denmark

Received  December 2013 Revised  January 2015 Published  March 2015

We prove that a fixed configuration of $N-1$ masses in the plane can be extended to a central configuration of $N$ masses by adding a specified additional mass only in finitely many ways. This holds for a family of potential functions including the Newtonian gravitational case and the classical planar point vortex model.
Citation: Marshall Hampton, Anders Nedergaard Jensen. Finiteness of relative equilibria in the planar generalized $N$-body problem with fixed subconfigurations. Journal of Geometric Mechanics, 2015, 7 (1) : 35-42. doi: 10.3934/jgm.2015.7.35
References:
[1]

A. Albouy and A. Chenciner, Le problème des n corps et les distances mutuelles,, Inv. Math., 131 (1998), 151.  doi: 10.1007/s002220050200.  Google Scholar

[2]

A. Albouy and V. Kaloshin, Finiteness of central configurations of five bodies in the plane,, Annals of Math., 176 (2012), 535.  doi: 10.4007/annals.2012.176.1.10.  Google Scholar

[3]

R. Bieri and J. R. J. Groves, The geometry of the set of characters induced by valuations,, J. Reine Angew. Math., 347 (1984), 168.   Google Scholar

[4]

L. M. Blumenthal and B. E. Gillam, Distribution of points in $n$-space,, Amer. Math. Mon., 50 (1943), 181.  doi: 10.2307/2302400.  Google Scholar

[5]

J. Chazy, Sur certaines trajectoires du problème des n corps,, Bull. Astron., 35 (1918), 321.   Google Scholar

[6]

L. Euler, De motu rectilineo trium corporum se mutuo attrahentium,, Novi Comm. Acad. Sci. Imp. Petrop., 11 (1767), 144.   Google Scholar

[7]

M. Hampton, Finiteness of kite relative equilibria in the five-vortex and five-body problems,, Qual. Theory Dyn. Sys., 8 (2010), 349.  doi: 10.1007/s12346-010-0016-7.  Google Scholar

[8]

M. Hampton and A. N. Jensen, Finiteness of spatial central configurations in the five-body problem,, Cel. Mech. Dynam. Astron., 109 (2011), 321.  doi: 10.1007/s10569-010-9328-9.  Google Scholar

[9]

M. Hampton and R. Moeckel, Finiteness of relative equilibria of the four-body problem,, Inventiones Mathematicae, 163 (2006), 289.  doi: 10.1007/s00222-005-0461-0.  Google Scholar

[10]

M. Hampton and R. Moeckel, Finiteness of stationary configurations of the four-vortex problem,, Trans. Amer. Math. Soc., 361 (2009), 1317.  doi: 10.1090/S0002-9947-08-04685-0.  Google Scholar

[11]

H. Helmholtz, Uber Integrale der hydrodynamischen Gleichungen, Welche den Wirbelbewegungen entsprechen,, Crelle's Journal für Mathematik, 55 (1858), 25.   Google Scholar

[12]

A. N. Jensen, Algorithmic Aspects of Gröbner Fans and Tropical Varieties,, Ph.D. Thesis, (2007).   Google Scholar

[13]

A. N. Jensen, Gfan, a software system for Gröbner fans and tropical varieties,, , ().   Google Scholar

[14]

J. Kulevich, G. E. Roberts and C. Smith, Finiteness in the planar restricted four-body problem,, Qual. Theory Dyn. Sys., 8 (2009), 357.  doi: 10.1007/s12346-010-0006-9.  Google Scholar

[15]

J. L. Lagrange, Essai Sur le Problème des Trois Corps,, Œuvres, (1772).   Google Scholar

[16]

P. W. Lindstrom, The number of planar central configurations is finite when $N-1$ mass positions are fixed,, Trans. Amer. Math. Soc., 353 (2001), 291.  doi: 10.1090/S0002-9947-00-02568-X.  Google Scholar

[17]

D. Maglagan and B. Sturmfels, Introduction to Tropical Geometry,, Expected publication date May 2015., (2015).   Google Scholar

[18]

R. Moeckel, On central configurations,, Math. Z., 205 (1990), 499.  doi: 10.1007/BF02571259.  Google Scholar

[19]

R. Moeckel, Relative equilibria with clusters of small masses,, J. Dyn. Diff. Eq., 9 (1997), 507.  doi: 10.1007/BF02219396.  Google Scholar

[20]

R. Moeckel, Generic finiteness for Dziobek configurations,, Trans. Amer. Math. Soc., 353 (2001), 4673.  doi: 10.1090/S0002-9947-01-02828-8.  Google Scholar

[21]

F. R. Moulton, The straight line solutions of the problem of n bodies,, Ann. of Math., 12 (1910), 1.  doi: 10.2307/2007159.  Google Scholar

[22]

I. Newton, Philosophi Naturalis Principia Mathematica,, Royal Society, (1687).   Google Scholar

[23]

G. Roberts, A continuum of relative equilibria in the five-body problem,, Phys. D, 127 (1999), 141.  doi: 10.1016/S0167-2789(98)00315-7.  Google Scholar

[24]

S. Smale, Mathematical problems for the next century,, Mathematical Intelligencer, 20 (1998), 7.  doi: 10.1007/BF03025291.  Google Scholar

[25]

D. Speyer and B. Sturmfels, The tropical Grassmannian,, Adv. Geom., 4 (2004), 389.  doi: 10.1515/advg.2004.023.  Google Scholar

[26]

F. Tien, Recursion Formulas of Central Configurations,, Thesis, (1993).   Google Scholar

[27]

A. Wintner, The Analytical Foundations of Celestial Mechanics,, Princeton Math. Series, (1941).   Google Scholar

[28]

Z. Xia, Central configurations with many small masses,, J. Differential Equations, 91 (1991), 168.  doi: 10.1016/0022-0396(91)90137-X.  Google Scholar

show all references

References:
[1]

A. Albouy and A. Chenciner, Le problème des n corps et les distances mutuelles,, Inv. Math., 131 (1998), 151.  doi: 10.1007/s002220050200.  Google Scholar

[2]

A. Albouy and V. Kaloshin, Finiteness of central configurations of five bodies in the plane,, Annals of Math., 176 (2012), 535.  doi: 10.4007/annals.2012.176.1.10.  Google Scholar

[3]

R. Bieri and J. R. J. Groves, The geometry of the set of characters induced by valuations,, J. Reine Angew. Math., 347 (1984), 168.   Google Scholar

[4]

L. M. Blumenthal and B. E. Gillam, Distribution of points in $n$-space,, Amer. Math. Mon., 50 (1943), 181.  doi: 10.2307/2302400.  Google Scholar

[5]

J. Chazy, Sur certaines trajectoires du problème des n corps,, Bull. Astron., 35 (1918), 321.   Google Scholar

[6]

L. Euler, De motu rectilineo trium corporum se mutuo attrahentium,, Novi Comm. Acad. Sci. Imp. Petrop., 11 (1767), 144.   Google Scholar

[7]

M. Hampton, Finiteness of kite relative equilibria in the five-vortex and five-body problems,, Qual. Theory Dyn. Sys., 8 (2010), 349.  doi: 10.1007/s12346-010-0016-7.  Google Scholar

[8]

M. Hampton and A. N. Jensen, Finiteness of spatial central configurations in the five-body problem,, Cel. Mech. Dynam. Astron., 109 (2011), 321.  doi: 10.1007/s10569-010-9328-9.  Google Scholar

[9]

M. Hampton and R. Moeckel, Finiteness of relative equilibria of the four-body problem,, Inventiones Mathematicae, 163 (2006), 289.  doi: 10.1007/s00222-005-0461-0.  Google Scholar

[10]

M. Hampton and R. Moeckel, Finiteness of stationary configurations of the four-vortex problem,, Trans. Amer. Math. Soc., 361 (2009), 1317.  doi: 10.1090/S0002-9947-08-04685-0.  Google Scholar

[11]

H. Helmholtz, Uber Integrale der hydrodynamischen Gleichungen, Welche den Wirbelbewegungen entsprechen,, Crelle's Journal für Mathematik, 55 (1858), 25.   Google Scholar

[12]

A. N. Jensen, Algorithmic Aspects of Gröbner Fans and Tropical Varieties,, Ph.D. Thesis, (2007).   Google Scholar

[13]

A. N. Jensen, Gfan, a software system for Gröbner fans and tropical varieties,, , ().   Google Scholar

[14]

J. Kulevich, G. E. Roberts and C. Smith, Finiteness in the planar restricted four-body problem,, Qual. Theory Dyn. Sys., 8 (2009), 357.  doi: 10.1007/s12346-010-0006-9.  Google Scholar

[15]

J. L. Lagrange, Essai Sur le Problème des Trois Corps,, Œuvres, (1772).   Google Scholar

[16]

P. W. Lindstrom, The number of planar central configurations is finite when $N-1$ mass positions are fixed,, Trans. Amer. Math. Soc., 353 (2001), 291.  doi: 10.1090/S0002-9947-00-02568-X.  Google Scholar

[17]

D. Maglagan and B. Sturmfels, Introduction to Tropical Geometry,, Expected publication date May 2015., (2015).   Google Scholar

[18]

R. Moeckel, On central configurations,, Math. Z., 205 (1990), 499.  doi: 10.1007/BF02571259.  Google Scholar

[19]

R. Moeckel, Relative equilibria with clusters of small masses,, J. Dyn. Diff. Eq., 9 (1997), 507.  doi: 10.1007/BF02219396.  Google Scholar

[20]

R. Moeckel, Generic finiteness for Dziobek configurations,, Trans. Amer. Math. Soc., 353 (2001), 4673.  doi: 10.1090/S0002-9947-01-02828-8.  Google Scholar

[21]

F. R. Moulton, The straight line solutions of the problem of n bodies,, Ann. of Math., 12 (1910), 1.  doi: 10.2307/2007159.  Google Scholar

[22]

I. Newton, Philosophi Naturalis Principia Mathematica,, Royal Society, (1687).   Google Scholar

[23]

G. Roberts, A continuum of relative equilibria in the five-body problem,, Phys. D, 127 (1999), 141.  doi: 10.1016/S0167-2789(98)00315-7.  Google Scholar

[24]

S. Smale, Mathematical problems for the next century,, Mathematical Intelligencer, 20 (1998), 7.  doi: 10.1007/BF03025291.  Google Scholar

[25]

D. Speyer and B. Sturmfels, The tropical Grassmannian,, Adv. Geom., 4 (2004), 389.  doi: 10.1515/advg.2004.023.  Google Scholar

[26]

F. Tien, Recursion Formulas of Central Configurations,, Thesis, (1993).   Google Scholar

[27]

A. Wintner, The Analytical Foundations of Celestial Mechanics,, Princeton Math. Series, (1941).   Google Scholar

[28]

Z. Xia, Central configurations with many small masses,, J. Differential Equations, 91 (1991), 168.  doi: 10.1016/0022-0396(91)90137-X.  Google Scholar

[1]

Montserrat Corbera, Jaume Llibre. On the existence of bi--pyramidal central configurations of the $n+2$--body problem with an $n$--gon base. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1049-1060. doi: 10.3934/dcds.2013.33.1049

[2]

Martha Alvarez, Joaquin Delgado, Jaume Llibre. On the spatial central configurations of the 5--body problem and their bifurcations. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 505-518. doi: 10.3934/dcdss.2008.1.505

[3]

Eduardo Piña. Computing collinear 4-Body Problem central configurations with given masses. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1215-1230. doi: 10.3934/dcds.2013.33.1215

[4]

Eduardo S. G. Leandro. On the Dziobek configurations of the restricted $(N+1)$-body problem with equal masses. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 589-595. doi: 10.3934/dcdss.2008.1.589

[5]

Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313

[6]

Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439

[7]

Allyson Oliveira, Hildeberto Cabral. On stacked central configurations of the planar coorbital satellites problem. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3715-3732. doi: 10.3934/dcds.2012.32.3715

[8]

Elbaz I. Abouelmagd, Juan L. G. Guirao, Aatef Hobiny, Faris Alzahrani. Stability of equilibria points for a dumbbell satellite when the central body is oblate spheroid. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1047-1054. doi: 10.3934/dcdss.2015.8.1047

[9]

Florian Rupp, Jürgen Scheurle. Classification of a class of relative equilibria in three body coulomb systems. Conference Publications, 2011, 2011 (Special) : 1254-1262. doi: 10.3934/proc.2011.2011.1254

[10]

Alessandra Celletti. Some KAM applications to Celestial Mechanics. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 533-544. doi: 10.3934/dcdss.2010.3.533

[11]

Luca Biasco, Luigi Chierchia. Exponential stability for the resonant D'Alembert model of celestial mechanics. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 569-594. doi: 10.3934/dcds.2005.12.569

[12]

Alain Chenciner, Jacques Féjoz. The flow of the equal-mass spatial 3-body problem in the neighborhood of the equilateral relative equilibrium. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 421-438. doi: 10.3934/dcdsb.2008.10.421

[13]

Nai-Chia Chen. Symmetric periodic orbits in three sub-problems of the $N$-body problem. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1523-1548. doi: 10.3934/dcdsb.2014.19.1523

[14]

Florin Diacu, Shuqiang Zhu. Almost all 3-body relative equilibria on $ \mathbb S^2 $ and $ \mathbb H^2 $ are inclined. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-13. doi: 10.3934/dcdss.2020067

[15]

Carlos García-Azpeitia. Relative periodic solutions of the $ n $-vortex problem on the sphere. Journal of Geometric Mechanics, 2019, 11 (3) : 427-438. doi: 10.3934/jgm.2019021

[16]

Gabriella Pinzari. Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result. Electronic Research Announcements, 2015, 22: 55-75. doi: 10.3934/era.2015.22.55

[17]

Mark Lewis, Daniel Offin, Pietro-Luciano Buono, Mitchell Kovacic. Instability of the periodic hip-hop orbit in the $2N$-body problem with equal masses. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1137-1155. doi: 10.3934/dcds.2013.33.1137

[18]

James Montaldi. Bifurcations of relative equilibria near zero momentum in Hamiltonian systems with spherical symmetry. Journal of Geometric Mechanics, 2014, 6 (2) : 237-260. doi: 10.3934/jgm.2014.6.237

[19]

Lyudmila Grigoryeva, Juan-Pablo Ortega, Stanislav S. Zub. Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies. Journal of Geometric Mechanics, 2014, 6 (3) : 373-415. doi: 10.3934/jgm.2014.6.373

[20]

David Rojas, Pedro J. Torres. Bifurcation of relative equilibria generated by a circular vortex path in a circular domain. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 749-760. doi: 10.3934/dcdsb.2019265

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]