March  2015, 7(1): 35-42. doi: 10.3934/jgm.2015.7.35

Finiteness of relative equilibria in the planar generalized $N$-body problem with fixed subconfigurations

1. 

140 Solon Campus Center, 1117 University Dr., UMD, Duluth, MN 55812-3000, United States

2. 

Department of Mathematics, Ny Munkegade 118, DK-8000, Aarhus, Denmark

Received  December 2013 Revised  January 2015 Published  March 2015

We prove that a fixed configuration of $N-1$ masses in the plane can be extended to a central configuration of $N$ masses by adding a specified additional mass only in finitely many ways. This holds for a family of potential functions including the Newtonian gravitational case and the classical planar point vortex model.
Citation: Marshall Hampton, Anders Nedergaard Jensen. Finiteness of relative equilibria in the planar generalized $N$-body problem with fixed subconfigurations. Journal of Geometric Mechanics, 2015, 7 (1) : 35-42. doi: 10.3934/jgm.2015.7.35
References:
[1]

A. Albouy and A. Chenciner, Le problème des n corps et les distances mutuelles,, Inv. Math., 131 (1998), 151.  doi: 10.1007/s002220050200.  Google Scholar

[2]

A. Albouy and V. Kaloshin, Finiteness of central configurations of five bodies in the plane,, Annals of Math., 176 (2012), 535.  doi: 10.4007/annals.2012.176.1.10.  Google Scholar

[3]

R. Bieri and J. R. J. Groves, The geometry of the set of characters induced by valuations,, J. Reine Angew. Math., 347 (1984), 168.   Google Scholar

[4]

L. M. Blumenthal and B. E. Gillam, Distribution of points in $n$-space,, Amer. Math. Mon., 50 (1943), 181.  doi: 10.2307/2302400.  Google Scholar

[5]

J. Chazy, Sur certaines trajectoires du problème des n corps,, Bull. Astron., 35 (1918), 321.   Google Scholar

[6]

L. Euler, De motu rectilineo trium corporum se mutuo attrahentium,, Novi Comm. Acad. Sci. Imp. Petrop., 11 (1767), 144.   Google Scholar

[7]

M. Hampton, Finiteness of kite relative equilibria in the five-vortex and five-body problems,, Qual. Theory Dyn. Sys., 8 (2010), 349.  doi: 10.1007/s12346-010-0016-7.  Google Scholar

[8]

M. Hampton and A. N. Jensen, Finiteness of spatial central configurations in the five-body problem,, Cel. Mech. Dynam. Astron., 109 (2011), 321.  doi: 10.1007/s10569-010-9328-9.  Google Scholar

[9]

M. Hampton and R. Moeckel, Finiteness of relative equilibria of the four-body problem,, Inventiones Mathematicae, 163 (2006), 289.  doi: 10.1007/s00222-005-0461-0.  Google Scholar

[10]

M. Hampton and R. Moeckel, Finiteness of stationary configurations of the four-vortex problem,, Trans. Amer. Math. Soc., 361 (2009), 1317.  doi: 10.1090/S0002-9947-08-04685-0.  Google Scholar

[11]

H. Helmholtz, Uber Integrale der hydrodynamischen Gleichungen, Welche den Wirbelbewegungen entsprechen,, Crelle's Journal für Mathematik, 55 (1858), 25.   Google Scholar

[12]

A. N. Jensen, Algorithmic Aspects of Gröbner Fans and Tropical Varieties,, Ph.D. Thesis, (2007).   Google Scholar

[13]

A. N. Jensen, Gfan, a software system for Gröbner fans and tropical varieties,, , ().   Google Scholar

[14]

J. Kulevich, G. E. Roberts and C. Smith, Finiteness in the planar restricted four-body problem,, Qual. Theory Dyn. Sys., 8 (2009), 357.  doi: 10.1007/s12346-010-0006-9.  Google Scholar

[15]

J. L. Lagrange, Essai Sur le Problème des Trois Corps,, Œuvres, (1772).   Google Scholar

[16]

P. W. Lindstrom, The number of planar central configurations is finite when $N-1$ mass positions are fixed,, Trans. Amer. Math. Soc., 353 (2001), 291.  doi: 10.1090/S0002-9947-00-02568-X.  Google Scholar

[17]

D. Maglagan and B. Sturmfels, Introduction to Tropical Geometry,, Expected publication date May 2015., (2015).   Google Scholar

[18]

R. Moeckel, On central configurations,, Math. Z., 205 (1990), 499.  doi: 10.1007/BF02571259.  Google Scholar

[19]

R. Moeckel, Relative equilibria with clusters of small masses,, J. Dyn. Diff. Eq., 9 (1997), 507.  doi: 10.1007/BF02219396.  Google Scholar

[20]

R. Moeckel, Generic finiteness for Dziobek configurations,, Trans. Amer. Math. Soc., 353 (2001), 4673.  doi: 10.1090/S0002-9947-01-02828-8.  Google Scholar

[21]

F. R. Moulton, The straight line solutions of the problem of n bodies,, Ann. of Math., 12 (1910), 1.  doi: 10.2307/2007159.  Google Scholar

[22]

I. Newton, Philosophi Naturalis Principia Mathematica,, Royal Society, (1687).   Google Scholar

[23]

G. Roberts, A continuum of relative equilibria in the five-body problem,, Phys. D, 127 (1999), 141.  doi: 10.1016/S0167-2789(98)00315-7.  Google Scholar

[24]

S. Smale, Mathematical problems for the next century,, Mathematical Intelligencer, 20 (1998), 7.  doi: 10.1007/BF03025291.  Google Scholar

[25]

D. Speyer and B. Sturmfels, The tropical Grassmannian,, Adv. Geom., 4 (2004), 389.  doi: 10.1515/advg.2004.023.  Google Scholar

[26]

F. Tien, Recursion Formulas of Central Configurations,, Thesis, (1993).   Google Scholar

[27]

A. Wintner, The Analytical Foundations of Celestial Mechanics,, Princeton Math. Series, (1941).   Google Scholar

[28]

Z. Xia, Central configurations with many small masses,, J. Differential Equations, 91 (1991), 168.  doi: 10.1016/0022-0396(91)90137-X.  Google Scholar

show all references

References:
[1]

A. Albouy and A. Chenciner, Le problème des n corps et les distances mutuelles,, Inv. Math., 131 (1998), 151.  doi: 10.1007/s002220050200.  Google Scholar

[2]

A. Albouy and V. Kaloshin, Finiteness of central configurations of five bodies in the plane,, Annals of Math., 176 (2012), 535.  doi: 10.4007/annals.2012.176.1.10.  Google Scholar

[3]

R. Bieri and J. R. J. Groves, The geometry of the set of characters induced by valuations,, J. Reine Angew. Math., 347 (1984), 168.   Google Scholar

[4]

L. M. Blumenthal and B. E. Gillam, Distribution of points in $n$-space,, Amer. Math. Mon., 50 (1943), 181.  doi: 10.2307/2302400.  Google Scholar

[5]

J. Chazy, Sur certaines trajectoires du problème des n corps,, Bull. Astron., 35 (1918), 321.   Google Scholar

[6]

L. Euler, De motu rectilineo trium corporum se mutuo attrahentium,, Novi Comm. Acad. Sci. Imp. Petrop., 11 (1767), 144.   Google Scholar

[7]

M. Hampton, Finiteness of kite relative equilibria in the five-vortex and five-body problems,, Qual. Theory Dyn. Sys., 8 (2010), 349.  doi: 10.1007/s12346-010-0016-7.  Google Scholar

[8]

M. Hampton and A. N. Jensen, Finiteness of spatial central configurations in the five-body problem,, Cel. Mech. Dynam. Astron., 109 (2011), 321.  doi: 10.1007/s10569-010-9328-9.  Google Scholar

[9]

M. Hampton and R. Moeckel, Finiteness of relative equilibria of the four-body problem,, Inventiones Mathematicae, 163 (2006), 289.  doi: 10.1007/s00222-005-0461-0.  Google Scholar

[10]

M. Hampton and R. Moeckel, Finiteness of stationary configurations of the four-vortex problem,, Trans. Amer. Math. Soc., 361 (2009), 1317.  doi: 10.1090/S0002-9947-08-04685-0.  Google Scholar

[11]

H. Helmholtz, Uber Integrale der hydrodynamischen Gleichungen, Welche den Wirbelbewegungen entsprechen,, Crelle's Journal für Mathematik, 55 (1858), 25.   Google Scholar

[12]

A. N. Jensen, Algorithmic Aspects of Gröbner Fans and Tropical Varieties,, Ph.D. Thesis, (2007).   Google Scholar

[13]

A. N. Jensen, Gfan, a software system for Gröbner fans and tropical varieties,, , ().   Google Scholar

[14]

J. Kulevich, G. E. Roberts and C. Smith, Finiteness in the planar restricted four-body problem,, Qual. Theory Dyn. Sys., 8 (2009), 357.  doi: 10.1007/s12346-010-0006-9.  Google Scholar

[15]

J. L. Lagrange, Essai Sur le Problème des Trois Corps,, Œuvres, (1772).   Google Scholar

[16]

P. W. Lindstrom, The number of planar central configurations is finite when $N-1$ mass positions are fixed,, Trans. Amer. Math. Soc., 353 (2001), 291.  doi: 10.1090/S0002-9947-00-02568-X.  Google Scholar

[17]

D. Maglagan and B. Sturmfels, Introduction to Tropical Geometry,, Expected publication date May 2015., (2015).   Google Scholar

[18]

R. Moeckel, On central configurations,, Math. Z., 205 (1990), 499.  doi: 10.1007/BF02571259.  Google Scholar

[19]

R. Moeckel, Relative equilibria with clusters of small masses,, J. Dyn. Diff. Eq., 9 (1997), 507.  doi: 10.1007/BF02219396.  Google Scholar

[20]

R. Moeckel, Generic finiteness for Dziobek configurations,, Trans. Amer. Math. Soc., 353 (2001), 4673.  doi: 10.1090/S0002-9947-01-02828-8.  Google Scholar

[21]

F. R. Moulton, The straight line solutions of the problem of n bodies,, Ann. of Math., 12 (1910), 1.  doi: 10.2307/2007159.  Google Scholar

[22]

I. Newton, Philosophi Naturalis Principia Mathematica,, Royal Society, (1687).   Google Scholar

[23]

G. Roberts, A continuum of relative equilibria in the five-body problem,, Phys. D, 127 (1999), 141.  doi: 10.1016/S0167-2789(98)00315-7.  Google Scholar

[24]

S. Smale, Mathematical problems for the next century,, Mathematical Intelligencer, 20 (1998), 7.  doi: 10.1007/BF03025291.  Google Scholar

[25]

D. Speyer and B. Sturmfels, The tropical Grassmannian,, Adv. Geom., 4 (2004), 389.  doi: 10.1515/advg.2004.023.  Google Scholar

[26]

F. Tien, Recursion Formulas of Central Configurations,, Thesis, (1993).   Google Scholar

[27]

A. Wintner, The Analytical Foundations of Celestial Mechanics,, Princeton Math. Series, (1941).   Google Scholar

[28]

Z. Xia, Central configurations with many small masses,, J. Differential Equations, 91 (1991), 168.  doi: 10.1016/0022-0396(91)90137-X.  Google Scholar

[1]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[2]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[3]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[4]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[5]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[6]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[7]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[8]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[9]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[10]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[11]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[12]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[13]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[14]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[15]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[16]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[17]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[18]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[19]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]