December  2015, 7(4): 395-429. doi: 10.3934/jgm.2015.7.395

Symmetry reduction, integrability and reconstruction in $k$-symplectic field theory

1. 

Departamento de Xeometría e Topoloxía, Universidade de Santiago de Compostela, Spain, Spain

2. 

Department of Mathematics, Ghent University, Krijgslaan 281, B-9000 Gent, Belgium

Received  April 2015 Revised  August 2015 Published  October 2015

We investigate the reduction process of a $k$-symplectic field theory whose Lagrangian is invariant under a symmetry group. We give explicit coordinate expressions of the resulting reduced partial differential equations, the so-called Lagrange-Poincaré field equations. We discuss two issues about reconstructing a solution from a given solution of the reduced equations. The first one is an interpretation of the integrability conditions, in terms of the curvatures of some connections. The second includes the introduction of the concept of a $k$-connection to provide a reconstruction method. We show that an invariant Lagrangian, under suitable regularity conditions, defines a `mechanical' $k$-connection.
Citation: L. Búa, T. Mestdag, M. Salgado. Symmetry reduction, integrability and reconstruction in $k$-symplectic field theory. Journal of Geometric Mechanics, 2015, 7 (4) : 395-429. doi: 10.3934/jgm.2015.7.395
References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics, (Second Edition),, Benjamin-Cummings Publishing Company, (1978).   Google Scholar

[2]

L. Búa, I. Bucataru and M. Salgado, Symmetries, Newtonoid vector fields and conservation laws in the Lagrangian k-symplectic formalism,, Rev. Math. Phys., 24 (2012).  doi: 10.1142/S0129055X12500304.  Google Scholar

[3]

M. Castrillón López, P. L. García and C. Rodrigo, Euler-Poincaré reduction in principal bundles by a subgroup of the structure group,, J. Geom. Phys., 74 (2013), 352.  doi: 10.1016/j.geomphys.2013.08.008.  Google Scholar

[4]

M. Castrillón López, T. S. Ratiu and S. Shkoller, Reduction in principal fibre bundles: Covariant Euler-Poincaré equations,, Proc. Amer. Math. Soc., 128 (2000), 2155.  doi: 10.1090/S0002-9939-99-05304-6.  Google Scholar

[5]

J. F. Carinena, M. Crampin and L. A. Ibort, On the multisymplectic formalism for first order field theories,, Differential Geometry and its Applications, 1 (1991), 345.  doi: 10.1016/0926-2245(91)90013-Y.  Google Scholar

[6]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Math. Soc., 152 (2001).  doi: 10.1090/memo/0722.  Google Scholar

[7]

A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Geometry of Lagrangian first-order classical field theories,, Forts. Phys., 44 (1996), 235.  doi: 10.1002/prop.2190440304.  Google Scholar

[8]

M. Crampin and T. Mestdag, Reduction and reconstruction aspects of second-order dynamical systems with symmetry,, Acta Appl. Math., 105 (2009), 241.  doi: 10.1007/s10440-008-9274-7.  Google Scholar

[9]

M. Crampin and F. A. E. Pirani, Applicable Differential Geometry,, London Mathematical Society Lecture Note Series, (1986).   Google Scholar

[10]

M. de Leon and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics,, North-Holland Mathematics Studies, (1989).   Google Scholar

[11]

D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm and T. S. Ratiu, Lagrange-Poincaré field equations,, J. Geom. Phys., 61 (2011), 2120.  doi: 10.1016/j.geomphys.2011.06.007.  Google Scholar

[12]

D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm, V. Putkaradze and T. S. Ratiu, Symmetry Reduced Dynamics of Charged Molecular Strands,, Arch. Ration. Mech. Anal., 197 (2010), 811.  doi: 10.1007/s00205-010-0305-y.  Google Scholar

[13]

R. Ghanam, G. Thompson and E. J. Miller, Variationality of four-dimensional Lie group Connections,, Journal of Lie Theory, 14 (2004), 395.   Google Scholar

[14]

M. J. Gotay, J. Isenberg, J. E. Marsden and R. Montgomery, Momentum Maps and Classical Relativistic Fields, Part I: Covariant Field Theory,, , (2004).   Google Scholar

[15]

C. Günther, The polysymplectic Hamiltonian formalism in field theory and calculus of variations I: The local case,, J. Differential Geom., 25 (1987), 23.   Google Scholar

[16]

F. Hélein and J. C. Wood, Harmonic maps,, In D. Krupka and D.J. Saunders, 1213 (2008), 417.  doi: 10.1016/B978-044452833-9.50009-7.  Google Scholar

[17]

I. V. Kanatchikov, Canonical structure of classical field theory in the polymomentum phase space,, Rep. Math. Phys., 41 (1998), 49.  doi: 10.1016/S0034-4877(98)80182-1.  Google Scholar

[18]

J. Kijowski and W. M. Tulczyjew, A Symplectic Framework for Field Theories,, Lecture Notes in Physics, (1979).   Google Scholar

[19]

D. Krupka, Lagrange theory in fibered manifolds,, Rep. Math. Phys., 2 (1971), 121.  doi: 10.1016/0034-4877(71)90025-5.  Google Scholar

[20]

M. de León, E. Merino and M. Salgado, $k$-cosymplectic manifolds and Lagrangian field theories,, J. Math. Phys., 42 (2001), 2092.  doi: 10.1063/1.1360997.  Google Scholar

[21]

J. C. Marrero, N. Román-Roy, M. Salgado and S. Vilariño, Reduction of polysymplectic manifolds,, J. Phys. A: Math. Theor., 48 (2015).  doi: 10.1088/1751-8113/48/5/055206.  Google Scholar

[22]

T. Mestdag, A Lie algebroid approach to Lagrangian systems with symmetry,, In J. Bures et al (eds.), (2005), 523.   Google Scholar

[23]

T. Mestdag and M. Crampin, Invariant Lagrangians, mechanical connections and the Lagrange-Poincaré equations,, J. Phys. A: Math. Theor., 41 (2008).  doi: 10.1088/1751-8113/41/34/344015.  Google Scholar

[24]

M. McLean and L. K. Norris, Covariant field theory on frame bundles of fibered manifolds,, J. Math. Phys., 41 (2000), 6808.  doi: 10.1063/1.1288797.  Google Scholar

[25]

F. Munteanu, A. M. Rey and M. Salgado, The Günther's formalism in classical field theory: Momentum map and reduction,, J. Math. Phys., 45 (2004), 1730.  doi: 10.1063/1.1688433.  Google Scholar

[26]

P. J. Olver, Applications of Lie Groups to Differential Equations,, Springer-Verlag, (1986).  doi: 10.1007/978-1-4684-0274-2.  Google Scholar

[27]

N. Román-Roy, M. Salgado and S. Vilariño, Symmetries and Conservation Laws in Günter k-symplectic formalism of Field Theory,, Reviews in Mathematical Physics, 19 (2007), 1117.  doi: 10.1142/S0129055X07003188.  Google Scholar

[28]

N. Román-Roy, M. Salgado and S. Vilariño, SOPDEs and nonlinear connections,, Publ. Math. (Debrecen), 78 (2011), 297.  doi: 10.5486/PMD.2011.4631.  Google Scholar

[29]

G. Sardanashvily, Generalized Hamiltonian Formalism for Field Theory. Constraint Systems,, World Scientific, (1995).  doi: 10.1142/9789812831484.  Google Scholar

[30]

D. J. Saunders, The Geometry of Jet Bundles,, Cambridge University Press, (1989).  doi: 10.1017/CBO9780511526411.  Google Scholar

[31]

J. Vankerschaver, Euler-Poincaré reduction for discrete field theories,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2712419.  Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics, (Second Edition),, Benjamin-Cummings Publishing Company, (1978).   Google Scholar

[2]

L. Búa, I. Bucataru and M. Salgado, Symmetries, Newtonoid vector fields and conservation laws in the Lagrangian k-symplectic formalism,, Rev. Math. Phys., 24 (2012).  doi: 10.1142/S0129055X12500304.  Google Scholar

[3]

M. Castrillón López, P. L. García and C. Rodrigo, Euler-Poincaré reduction in principal bundles by a subgroup of the structure group,, J. Geom. Phys., 74 (2013), 352.  doi: 10.1016/j.geomphys.2013.08.008.  Google Scholar

[4]

M. Castrillón López, T. S. Ratiu and S. Shkoller, Reduction in principal fibre bundles: Covariant Euler-Poincaré equations,, Proc. Amer. Math. Soc., 128 (2000), 2155.  doi: 10.1090/S0002-9939-99-05304-6.  Google Scholar

[5]

J. F. Carinena, M. Crampin and L. A. Ibort, On the multisymplectic formalism for first order field theories,, Differential Geometry and its Applications, 1 (1991), 345.  doi: 10.1016/0926-2245(91)90013-Y.  Google Scholar

[6]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Math. Soc., 152 (2001).  doi: 10.1090/memo/0722.  Google Scholar

[7]

A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Geometry of Lagrangian first-order classical field theories,, Forts. Phys., 44 (1996), 235.  doi: 10.1002/prop.2190440304.  Google Scholar

[8]

M. Crampin and T. Mestdag, Reduction and reconstruction aspects of second-order dynamical systems with symmetry,, Acta Appl. Math., 105 (2009), 241.  doi: 10.1007/s10440-008-9274-7.  Google Scholar

[9]

M. Crampin and F. A. E. Pirani, Applicable Differential Geometry,, London Mathematical Society Lecture Note Series, (1986).   Google Scholar

[10]

M. de Leon and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics,, North-Holland Mathematics Studies, (1989).   Google Scholar

[11]

D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm and T. S. Ratiu, Lagrange-Poincaré field equations,, J. Geom. Phys., 61 (2011), 2120.  doi: 10.1016/j.geomphys.2011.06.007.  Google Scholar

[12]

D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm, V. Putkaradze and T. S. Ratiu, Symmetry Reduced Dynamics of Charged Molecular Strands,, Arch. Ration. Mech. Anal., 197 (2010), 811.  doi: 10.1007/s00205-010-0305-y.  Google Scholar

[13]

R. Ghanam, G. Thompson and E. J. Miller, Variationality of four-dimensional Lie group Connections,, Journal of Lie Theory, 14 (2004), 395.   Google Scholar

[14]

M. J. Gotay, J. Isenberg, J. E. Marsden and R. Montgomery, Momentum Maps and Classical Relativistic Fields, Part I: Covariant Field Theory,, , (2004).   Google Scholar

[15]

C. Günther, The polysymplectic Hamiltonian formalism in field theory and calculus of variations I: The local case,, J. Differential Geom., 25 (1987), 23.   Google Scholar

[16]

F. Hélein and J. C. Wood, Harmonic maps,, In D. Krupka and D.J. Saunders, 1213 (2008), 417.  doi: 10.1016/B978-044452833-9.50009-7.  Google Scholar

[17]

I. V. Kanatchikov, Canonical structure of classical field theory in the polymomentum phase space,, Rep. Math. Phys., 41 (1998), 49.  doi: 10.1016/S0034-4877(98)80182-1.  Google Scholar

[18]

J. Kijowski and W. M. Tulczyjew, A Symplectic Framework for Field Theories,, Lecture Notes in Physics, (1979).   Google Scholar

[19]

D. Krupka, Lagrange theory in fibered manifolds,, Rep. Math. Phys., 2 (1971), 121.  doi: 10.1016/0034-4877(71)90025-5.  Google Scholar

[20]

M. de León, E. Merino and M. Salgado, $k$-cosymplectic manifolds and Lagrangian field theories,, J. Math. Phys., 42 (2001), 2092.  doi: 10.1063/1.1360997.  Google Scholar

[21]

J. C. Marrero, N. Román-Roy, M. Salgado and S. Vilariño, Reduction of polysymplectic manifolds,, J. Phys. A: Math. Theor., 48 (2015).  doi: 10.1088/1751-8113/48/5/055206.  Google Scholar

[22]

T. Mestdag, A Lie algebroid approach to Lagrangian systems with symmetry,, In J. Bures et al (eds.), (2005), 523.   Google Scholar

[23]

T. Mestdag and M. Crampin, Invariant Lagrangians, mechanical connections and the Lagrange-Poincaré equations,, J. Phys. A: Math. Theor., 41 (2008).  doi: 10.1088/1751-8113/41/34/344015.  Google Scholar

[24]

M. McLean and L. K. Norris, Covariant field theory on frame bundles of fibered manifolds,, J. Math. Phys., 41 (2000), 6808.  doi: 10.1063/1.1288797.  Google Scholar

[25]

F. Munteanu, A. M. Rey and M. Salgado, The Günther's formalism in classical field theory: Momentum map and reduction,, J. Math. Phys., 45 (2004), 1730.  doi: 10.1063/1.1688433.  Google Scholar

[26]

P. J. Olver, Applications of Lie Groups to Differential Equations,, Springer-Verlag, (1986).  doi: 10.1007/978-1-4684-0274-2.  Google Scholar

[27]

N. Román-Roy, M. Salgado and S. Vilariño, Symmetries and Conservation Laws in Günter k-symplectic formalism of Field Theory,, Reviews in Mathematical Physics, 19 (2007), 1117.  doi: 10.1142/S0129055X07003188.  Google Scholar

[28]

N. Román-Roy, M. Salgado and S. Vilariño, SOPDEs and nonlinear connections,, Publ. Math. (Debrecen), 78 (2011), 297.  doi: 10.5486/PMD.2011.4631.  Google Scholar

[29]

G. Sardanashvily, Generalized Hamiltonian Formalism for Field Theory. Constraint Systems,, World Scientific, (1995).  doi: 10.1142/9789812831484.  Google Scholar

[30]

D. J. Saunders, The Geometry of Jet Bundles,, Cambridge University Press, (1989).  doi: 10.1017/CBO9780511526411.  Google Scholar

[31]

J. Vankerschaver, Euler-Poincaré reduction for discrete field theories,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2712419.  Google Scholar

[1]

Marco Castrillón López, Mark J. Gotay. Covariantizing classical field theories. Journal of Geometric Mechanics, 2011, 3 (4) : 487-506. doi: 10.3934/jgm.2011.3.487

[2]

Harald Markum, Rainer Pullirsch. Classical and quantum chaos in fundamental field theories. Conference Publications, 2003, 2003 (Special) : 596-603. doi: 10.3934/proc.2003.2003.596

[3]

Cédric M. Campos, Elisa Guzmán, Juan Carlos Marrero. Classical field theories of first order and Lagrangian submanifolds of premultisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (1) : 1-26. doi: 10.3934/jgm.2012.4.1

[4]

Narciso Román-Roy, Ángel M. Rey, Modesto Salgado, Silvia Vilariño. On the $k$-symplectic, $k$-cosymplectic and multisymplectic formalisms of classical field theories. Journal of Geometric Mechanics, 2011, 3 (1) : 113-137. doi: 10.3934/jgm.2011.3.113

[5]

Pedro Daniel Prieto-Martínez, Narciso Román-Roy. A new multisymplectic unified formalism for second order classical field theories. Journal of Geometric Mechanics, 2015, 7 (2) : 203-253. doi: 10.3934/jgm.2015.7.203

[6]

Alberto Ibort, Amelia Spivak. Covariant Hamiltonian field theories on manifolds with boundary: Yang-Mills theories. Journal of Geometric Mechanics, 2017, 9 (1) : 47-82. doi: 10.3934/jgm.2017002

[7]

E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1

[8]

Eduardo Martínez. Classical field theory on Lie algebroids: Multisymplectic formalism. Journal of Geometric Mechanics, 2018, 10 (1) : 93-138. doi: 10.3934/jgm.2018004

[9]

Jiakun Liu, Neil S. Trudinger. On the classical solvability of near field reflector problems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 895-916. doi: 10.3934/dcds.2016.36.895

[10]

Olha Ivanyshyn. Shape reconstruction of acoustic obstacles from the modulus of the far field pattern. Inverse Problems & Imaging, 2007, 1 (4) : 609-622. doi: 10.3934/ipi.2007.1.609

[11]

Ryan Compton, Stanley Osher, Louis-S. Bouchard. Hybrid regularization for MRI reconstruction with static field inhomogeneity correction. Inverse Problems & Imaging, 2013, 7 (4) : 1215-1233. doi: 10.3934/ipi.2013.7.1215

[12]

Tomasz Kaczynski, Marian Mrozek, Thomas Wanner. Towards a formal tie between combinatorial and classical vector field dynamics. Journal of Computational Dynamics, 2016, 3 (1) : 17-50. doi: 10.3934/jcd.2016002

[13]

Sebastián Ferrer, Francisco Crespo. Alternative angle-based approach to the $\mathcal{KS}$-Map. An interpretation through symmetry and reduction. Journal of Geometric Mechanics, 2018, 10 (3) : 359-372. doi: 10.3934/jgm.2018013

[14]

Shi Jin, Christof Sparber, Zhennan Zhou. On the classical limit of a time-dependent self-consistent field system: Analysis and computation. Kinetic & Related Models, 2017, 10 (1) : 263-298. doi: 10.3934/krm.2017011

[15]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157

[16]

Alvaro Sandroni, Eran Shmaya. A prequential test for exchangeable theories. Journal of Dynamics & Games, 2014, 1 (3) : 497-505. doi: 10.3934/jdg.2014.1.497

[17]

Qi Wang, Tianyu Zhang. Kinetic theories for biofilms. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 1027-1059. doi: 10.3934/dcdsb.2012.17.1027

[18]

Edmond W. H. Lee. Equational theories of unstable involution semigroups. Electronic Research Announcements, 2017, 24: 10-20. doi: 10.3934/era.2017.24.002

[19]

Emmanuel Hebey. Solitary waves in critical Abelian gauge theories. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1747-1761. doi: 10.3934/dcds.2012.32.1747

[20]

Chjan C. Lim, Da Zhu. Variational analysis of energy-enstrophy theories on the sphere. Conference Publications, 2005, 2005 (Special) : 611-620. doi: 10.3934/proc.2005.2005.611

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]