Citation: |
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics, (Second Edition), Benjamin-Cummings Publishing Company, New York, 1978. |
[2] |
L. Búa, I. Bucataru and M. Salgado, Symmetries, Newtonoid vector fields and conservation laws in the Lagrangian k-symplectic formalism, Rev. Math. Phys., 24 (2012), 1250030, 24 pp.doi: 10.1142/S0129055X12500304. |
[3] |
M. Castrillón López, P. L. García and C. Rodrigo, Euler-Poincaré reduction in principal bundles by a subgroup of the structure group, J. Geom. Phys., 74 (2013), 352-369.doi: 10.1016/j.geomphys.2013.08.008. |
[4] |
M. Castrillón López, T. S. Ratiu and S. Shkoller, Reduction in principal fibre bundles: Covariant Euler-Poincaré equations, Proc. Amer. Math. Soc., 128 (2000), 2155-2164.doi: 10.1090/S0002-9939-99-05304-6. |
[5] |
J. F. Carinena, M. Crampin and L. A. Ibort, On the multisymplectic formalism for first order field theories, Differential Geometry and its Applications, 1 (1991), 345-374.doi: 10.1016/0926-2245(91)90013-Y. |
[6] |
H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Mem. Amer. Math. Soc., 152 (2001), x+108 pp.doi: 10.1090/memo/0722. |
[7] |
A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Geometry of Lagrangian first-order classical field theories, Forts. Phys., 44 (1996), 235-280.doi: 10.1002/prop.2190440304. |
[8] |
M. Crampin and T. Mestdag, Reduction and reconstruction aspects of second-order dynamical systems with symmetry, Acta Appl. Math., 105 (2009), 241-266.doi: 10.1007/s10440-008-9274-7. |
[9] |
M. Crampin and F. A. E. Pirani, Applicable Differential Geometry, London Mathematical Society Lecture Note Series, 59. Cambridge University Press, Cambridge, 1986. |
[10] |
M. de Leon and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 158. North-Holland Publishing Co., Amsterdam, 1989. |
[11] |
D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm and T. S. Ratiu, Lagrange-Poincaré field equations, J. Geom. Phys., 61 (2011), 2120-2146.doi: 10.1016/j.geomphys.2011.06.007. |
[12] |
D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm, V. Putkaradze and T. S. Ratiu, Symmetry Reduced Dynamics of Charged Molecular Strands, Arch. Ration. Mech. Anal., 197 (2010), 811-902.doi: 10.1007/s00205-010-0305-y. |
[13] |
R. Ghanam, G. Thompson and E. J. Miller, Variationality of four-dimensional Lie group Connections, Journal of Lie Theory, 14 (2004), 395-425. |
[14] |
M. J. Gotay, J. Isenberg, J. E. Marsden and R. Montgomery, Momentum Maps and Classical Relativistic Fields, Part I: Covariant Field Theory, arXiv:physics/9801019v2 (2004). |
[15] |
C. Günther, The polysymplectic Hamiltonian formalism in field theory and calculus of variations I: The local case, J. Differential Geom., 25 (1987), 23-53. |
[16] |
F. Hélein and J. C. Wood, Harmonic maps, In D. Krupka and D.J. Saunders, Handbook of Global Analysis, Elsevier, 1213 (2008), 417-491.doi: 10.1016/B978-044452833-9.50009-7. |
[17] |
I. V. Kanatchikov, Canonical structure of classical field theory in the polymomentum phase space, Rep. Math. Phys., 41 (1998), 49-90.doi: 10.1016/S0034-4877(98)80182-1. |
[18] |
J. Kijowski and W. M. Tulczyjew, A Symplectic Framework for Field Theories, Lecture Notes in Physics, 107. Springer-Verlag, New York, 1979. |
[19] |
D. Krupka, Lagrange theory in fibered manifolds, Rep. Math. Phys., 2 (1971), 121-133.doi: 10.1016/0034-4877(71)90025-5. |
[20] |
M. de León, E. Merino and M. Salgado, $k$-cosymplectic manifolds and Lagrangian field theories, J. Math. Phys., 42 (2001), 2092-2104.doi: 10.1063/1.1360997. |
[21] |
J. C. Marrero, N. Román-Roy, M. Salgado and S. Vilariño, Reduction of polysymplectic manifolds, J. Phys. A: Math. Theor., 48 (2015), 055206 (43pp).doi: 10.1088/1751-8113/48/5/055206. |
[22] |
T. Mestdag, A Lie algebroid approach to Lagrangian systems with symmetry, In J. Bures et al (eds.), Differential Geometry and its Applications, Proc. Conf., Prague (Czech Republic) (2005), 523-535. |
[23] |
T. Mestdag and M. Crampin, Invariant Lagrangians, mechanical connections and the Lagrange-Poincaré equations, J. Phys. A: Math. Theor., 41 (2008), 344015 (20pp).doi: 10.1088/1751-8113/41/34/344015. |
[24] |
M. McLean and L. K. Norris, Covariant field theory on frame bundles of fibered manifolds, J. Math. Phys., 41 (2000), 6808-6823.doi: 10.1063/1.1288797. |
[25] |
F. Munteanu, A. M. Rey and M. Salgado, The Günther's formalism in classical field theory: Momentum map and reduction, J. Math. Phys., 45 (2004), 1730-1751.doi: 10.1063/1.1688433. |
[26] |
P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, 1986.doi: 10.1007/978-1-4684-0274-2. |
[27] |
N. Román-Roy, M. Salgado and S. Vilariño, Symmetries and Conservation Laws in Günter k-symplectic formalism of Field Theory, Reviews in Mathematical Physics,, 19 (2007), 1117-1147.doi: 10.1142/S0129055X07003188. |
[28] |
N. Román-Roy, M. Salgado and S. Vilariño, SOPDEs and nonlinear connections, Publ. Math. (Debrecen), 78 (2011), 297-316.doi: 10.5486/PMD.2011.4631. |
[29] |
G. Sardanashvily, Generalized Hamiltonian Formalism for Field Theory. Constraint Systems, World Scientific, Singapore, 1995.doi: 10.1142/9789812831484. |
[30] |
D. J. Saunders, The Geometry of Jet Bundles, Cambridge University Press, Cambridge, 1989.doi: 10.1017/CBO9780511526411. |
[31] |
J. Vankerschaver, Euler-Poincaré reduction for discrete field theories, J. Math. Phys., 48 (2007), 032902, 17pp.doi: 10.1063/1.2712419. |