\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Symmetry reduction, integrability and reconstruction in $k$-symplectic field theory

Abstract Related Papers Cited by
  • We investigate the reduction process of a $k$-symplectic field theory whose Lagrangian is invariant under a symmetry group. We give explicit coordinate expressions of the resulting reduced partial differential equations, the so-called Lagrange-Poincaré field equations. We discuss two issues about reconstructing a solution from a given solution of the reduced equations. The first one is an interpretation of the integrability conditions, in terms of the curvatures of some connections. The second includes the introduction of the concept of a $k$-connection to provide a reconstruction method. We show that an invariant Lagrangian, under suitable regularity conditions, defines a `mechanical' $k$-connection.
    Mathematics Subject Classification: 37J15, 53Z05, 70S05, 70S10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Abraham and J. E. Marsden, Foundations of Mechanics, (Second Edition), Benjamin-Cummings Publishing Company, New York, 1978.

    [2]

    L. Búa, I. Bucataru and M. Salgado, Symmetries, Newtonoid vector fields and conservation laws in the Lagrangian k-symplectic formalism, Rev. Math. Phys., 24 (2012), 1250030, 24 pp.doi: 10.1142/S0129055X12500304.

    [3]

    M. Castrillón López, P. L. García and C. Rodrigo, Euler-Poincaré reduction in principal bundles by a subgroup of the structure group, J. Geom. Phys., 74 (2013), 352-369.doi: 10.1016/j.geomphys.2013.08.008.

    [4]

    M. Castrillón López, T. S. Ratiu and S. Shkoller, Reduction in principal fibre bundles: Covariant Euler-Poincaré equations, Proc. Amer. Math. Soc., 128 (2000), 2155-2164.doi: 10.1090/S0002-9939-99-05304-6.

    [5]

    J. F. Carinena, M. Crampin and L. A. Ibort, On the multisymplectic formalism for first order field theories, Differential Geometry and its Applications, 1 (1991), 345-374.doi: 10.1016/0926-2245(91)90013-Y.

    [6]

    H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Mem. Amer. Math. Soc., 152 (2001), x+108 pp.doi: 10.1090/memo/0722.

    [7]

    A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Geometry of Lagrangian first-order classical field theories, Forts. Phys., 44 (1996), 235-280.doi: 10.1002/prop.2190440304.

    [8]

    M. Crampin and T. Mestdag, Reduction and reconstruction aspects of second-order dynamical systems with symmetry, Acta Appl. Math., 105 (2009), 241-266.doi: 10.1007/s10440-008-9274-7.

    [9]

    M. Crampin and F. A. E. Pirani, Applicable Differential Geometry, London Mathematical Society Lecture Note Series, 59. Cambridge University Press, Cambridge, 1986.

    [10]

    M. de Leon and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 158. North-Holland Publishing Co., Amsterdam, 1989.

    [11]

    D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm and T. S. Ratiu, Lagrange-Poincaré field equations, J. Geom. Phys., 61 (2011), 2120-2146.doi: 10.1016/j.geomphys.2011.06.007.

    [12]

    D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm, V. Putkaradze and T. S. Ratiu, Symmetry Reduced Dynamics of Charged Molecular Strands, Arch. Ration. Mech. Anal., 197 (2010), 811-902.doi: 10.1007/s00205-010-0305-y.

    [13]

    R. Ghanam, G. Thompson and E. J. Miller, Variationality of four-dimensional Lie group Connections, Journal of Lie Theory, 14 (2004), 395-425.

    [14]

    M. J. Gotay, J. Isenberg, J. E. Marsden and R. Montgomery, Momentum Maps and Classical Relativistic Fields, Part I: Covariant Field Theory, arXiv:physics/9801019v2 (2004).

    [15]

    C. Günther, The polysymplectic Hamiltonian formalism in field theory and calculus of variations I: The local case, J. Differential Geom., 25 (1987), 23-53.

    [16]

    F. Hélein and J. C. Wood, Harmonic maps, In D. Krupka and D.J. Saunders, Handbook of Global Analysis, Elsevier, 1213 (2008), 417-491.doi: 10.1016/B978-044452833-9.50009-7.

    [17]

    I. V. Kanatchikov, Canonical structure of classical field theory in the polymomentum phase space, Rep. Math. Phys., 41 (1998), 49-90.doi: 10.1016/S0034-4877(98)80182-1.

    [18]

    J. Kijowski and W. M. Tulczyjew, A Symplectic Framework for Field Theories, Lecture Notes in Physics, 107. Springer-Verlag, New York, 1979.

    [19]

    D. Krupka, Lagrange theory in fibered manifolds, Rep. Math. Phys., 2 (1971), 121-133.doi: 10.1016/0034-4877(71)90025-5.

    [20]

    M. de León, E. Merino and M. Salgado, $k$-cosymplectic manifolds and Lagrangian field theories, J. Math. Phys., 42 (2001), 2092-2104.doi: 10.1063/1.1360997.

    [21]

    J. C. Marrero, N. Román-Roy, M. Salgado and S. Vilariño, Reduction of polysymplectic manifolds, J. Phys. A: Math. Theor., 48 (2015), 055206 (43pp).doi: 10.1088/1751-8113/48/5/055206.

    [22]

    T. Mestdag, A Lie algebroid approach to Lagrangian systems with symmetry, In J. Bures et al (eds.), Differential Geometry and its Applications, Proc. Conf., Prague (Czech Republic) (2005), 523-535.

    [23]

    T. Mestdag and M. Crampin, Invariant Lagrangians, mechanical connections and the Lagrange-Poincaré equations, J. Phys. A: Math. Theor., 41 (2008), 344015 (20pp).doi: 10.1088/1751-8113/41/34/344015.

    [24]

    M. McLean and L. K. Norris, Covariant field theory on frame bundles of fibered manifolds, J. Math. Phys., 41 (2000), 6808-6823.doi: 10.1063/1.1288797.

    [25]

    F. Munteanu, A. M. Rey and M. Salgado, The Günther's formalism in classical field theory: Momentum map and reduction, J. Math. Phys., 45 (2004), 1730-1751.doi: 10.1063/1.1688433.

    [26]

    P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, 1986.doi: 10.1007/978-1-4684-0274-2.

    [27]

    N. Román-Roy, M. Salgado and S. Vilariño, Symmetries and Conservation Laws in Günter k-symplectic formalism of Field Theory, Reviews in Mathematical Physics,, 19 (2007), 1117-1147.doi: 10.1142/S0129055X07003188.

    [28]

    N. Román-Roy, M. Salgado and S. Vilariño, SOPDEs and nonlinear connections, Publ. Math. (Debrecen), 78 (2011), 297-316.doi: 10.5486/PMD.2011.4631.

    [29]

    G. Sardanashvily, Generalized Hamiltonian Formalism for Field Theory. Constraint Systems, World Scientific, Singapore, 1995.doi: 10.1142/9789812831484.

    [30]

    D. J. Saunders, The Geometry of Jet Bundles, Cambridge University Press, Cambridge, 1989.doi: 10.1017/CBO9780511526411.

    [31]

    J. Vankerschaver, Euler-Poincaré reduction for discrete field theories, J. Math. Phys., 48 (2007), 032902, 17pp.doi: 10.1063/1.2712419.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(216) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return