-
Previous Article
Higher-order variational calculus on Lie algebroids
- JGM Home
- This Issue
-
Next Article
Finiteness of relative equilibria in the planar generalized $N$-body problem with fixed subconfigurations
On the discretization of nonholonomic dynamics in $\mathbb{R}^n$
1. | Zentrum Mathematik der Technische Universität München, D-85747 Garching bei Munchen, Germany, Germany |
References:
[1] |
A. M. Bloch, Nonholonomic Mechanics and Control,, Interdisciplinary Applied Mathematics Series, (2003).
doi: 10.1007/b97376. |
[2] |
A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. Murray, Nonholonomic mechanical systems with symmetry,, Arch. Rational Mech. Anal., 136 (1996), 21.
doi: 10.1007/BF02199365. |
[3] |
F. Cantrijn, J. Cortés, M. de León and D. Martín de Diego, On the geometry of generalized Chaplygin systems,, Math. Proc. Cambridge Philos. Soc., 132 (2002), 323.
doi: 10.1017/S0305004101005679. |
[4] |
J. Cortés, Geometric, Control and Numerical Aspects of Nonholonomic Systems,, Lecture Notes in Mathematics, (1793).
doi: 10.1007/b84020. |
[5] |
J. Cortés and E. Martínez, Nonholonomic integrators,, Nonlinearity, 14 (2001), 1365. Google Scholar |
[6] |
Y. N. Fedorov and D. V. Zenkov, Discrete nonholonomic LL systems on Lie groups,, Nonlinearity, 18 (2005), 2211.
doi: 10.1088/0951-7715/18/5/017. |
[7] |
S. Ferraro, D. Iglesias and D. Martín de Diego, Momentum and energy preserving integrators for nonholonomic dynamics,, Nonlinearity, 21 (2008), 1911.
doi: 10.1088/0951-7715/21/8/009. |
[8] |
S. Ferraro, D. Iglesias and D. Martín de Diego, Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods,, Discrete and Continuous Dynamical Systems, (2009), 220.
|
[9] |
S. Ferraro, F. Jiménez and D. Martín de Diego, New developments on the geometric nonholonomic integrator,, accepted by Nonlinearity, (). Google Scholar |
[10] |
B. Fielder and J. Scheurle, Discretization of homoclinic orbits, rapid forcing and invisible chaos,, Memoirs of the American Mathematical Society, 119 (1996).
doi: 10.1090/memo/0570. |
[11] |
J. P. Fink and W. C. Rheinboldt, On the discretization error of parametrized nonlinear equations,, SIAM Journal on Numerical Analysis, 20 (1983), 732.
doi: 10.1137/0720049. |
[12] |
Z. Ge and J. E. Marsden, Lie-Poisson integrators and Lie-Poisson Hamilton-Jacobi theory,, Phys. Lett. A., 133 (1988), 134.
doi: 10.1016/0375-9601(88)90773-6. |
[13] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations,, Springer Series in Computational Mathematics, (2002).
doi: 10.1007/978-3-662-05018-7. |
[14] |
D. Iglesias, J. C. Marrero, Martín de Diego and E. Martínez, Discrete nonholonomic Lagrangian systems on Lie groupoids,, Journal of Nonlinear Sciences, 18 (2008), 221.
doi: 10.1007/s00332-007-9012-8. |
[15] |
Kobilarov M, D. Martín de Diego and S. Ferraro, Simulating nonholonomic dynamics,, Boletín de la Sociedad de Matemática Aplicada SeMA, 50 (2010), 61.
|
[16] |
J. Koiller, Reduction of some classical nonholonomic systems with symmetry,, Arch. Rational Mech. Anal., 118 (1992), 113.
doi: 10.1007/BF00375092. |
[17] |
W. S. Koon and J. E. Marsden, Poisson reduction for nonholonomic mechanical systems with symmetry,, Rep. Math. Phys., 42 (1998), 101.
doi: 10.1016/S0034-4877(98)80007-4. |
[18] |
K. Hüper and F. Silva Leite, On the geometry of rolling and interpolating curves on $S^n$, $SO_n$ and Grassman manifolds,, Journal of Dynamical and Control Systems, 13 (2007), 467.
doi: 10.1007/s10883-007-9027-3. |
[19] |
M. de León and D. Martín de Diego, On the geometry of nonholonomic Lagrangian systems,, J. Math. Phys., 37 (1996), 3389.
doi: 10.1063/1.531571. |
[20] |
R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems,, J. Nonlinear Science, 16 (2006), 283.
doi: 10.1007/s00332-005-0698-1. |
[21] |
J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, 10 (2001), 357.
doi: 10.1017/S096249290100006X. |
[22] |
J. Moser and A. P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials,, Comm. Math. Phys., 139 (1991), 217.
doi: 10.1007/BF02352494. |
[23] |
P. J. Rabier and W. C. Rheinboldt, A geometric treatment of implicit differential-algebraic equations,, Journal of Differential Equations, 109 (1994), 110.
doi: 10.1006/jdeq.1994.1046. |
[24] |
P. J. Rabier and W. C. Rheinboldt, Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint,, Society for Industrial and Applied Mathematics, (1987). Google Scholar |
[25] |
S. Reich, On an existence and uniqueness theory for nonlinear differential-algebraic equations,, Circuits, 11 (1992).
doi: 10.1007/BF01189230. |
[26] |
S. Reich, On a geometrical interpretation of differential-algebraic equations,, Circuits, 10 (1991), 343.
doi: 10.1007/BF01187550. |
[27] |
W. C. Rheinboldt, Differential-algebraic systems as differential equations on manifolds,, Mathematics of Computation, 43 (1984), 473.
doi: 10.1090/S0025-5718-1984-0758195-5. |
show all references
References:
[1] |
A. M. Bloch, Nonholonomic Mechanics and Control,, Interdisciplinary Applied Mathematics Series, (2003).
doi: 10.1007/b97376. |
[2] |
A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. Murray, Nonholonomic mechanical systems with symmetry,, Arch. Rational Mech. Anal., 136 (1996), 21.
doi: 10.1007/BF02199365. |
[3] |
F. Cantrijn, J. Cortés, M. de León and D. Martín de Diego, On the geometry of generalized Chaplygin systems,, Math. Proc. Cambridge Philos. Soc., 132 (2002), 323.
doi: 10.1017/S0305004101005679. |
[4] |
J. Cortés, Geometric, Control and Numerical Aspects of Nonholonomic Systems,, Lecture Notes in Mathematics, (1793).
doi: 10.1007/b84020. |
[5] |
J. Cortés and E. Martínez, Nonholonomic integrators,, Nonlinearity, 14 (2001), 1365. Google Scholar |
[6] |
Y. N. Fedorov and D. V. Zenkov, Discrete nonholonomic LL systems on Lie groups,, Nonlinearity, 18 (2005), 2211.
doi: 10.1088/0951-7715/18/5/017. |
[7] |
S. Ferraro, D. Iglesias and D. Martín de Diego, Momentum and energy preserving integrators for nonholonomic dynamics,, Nonlinearity, 21 (2008), 1911.
doi: 10.1088/0951-7715/21/8/009. |
[8] |
S. Ferraro, D. Iglesias and D. Martín de Diego, Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods,, Discrete and Continuous Dynamical Systems, (2009), 220.
|
[9] |
S. Ferraro, F. Jiménez and D. Martín de Diego, New developments on the geometric nonholonomic integrator,, accepted by Nonlinearity, (). Google Scholar |
[10] |
B. Fielder and J. Scheurle, Discretization of homoclinic orbits, rapid forcing and invisible chaos,, Memoirs of the American Mathematical Society, 119 (1996).
doi: 10.1090/memo/0570. |
[11] |
J. P. Fink and W. C. Rheinboldt, On the discretization error of parametrized nonlinear equations,, SIAM Journal on Numerical Analysis, 20 (1983), 732.
doi: 10.1137/0720049. |
[12] |
Z. Ge and J. E. Marsden, Lie-Poisson integrators and Lie-Poisson Hamilton-Jacobi theory,, Phys. Lett. A., 133 (1988), 134.
doi: 10.1016/0375-9601(88)90773-6. |
[13] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations,, Springer Series in Computational Mathematics, (2002).
doi: 10.1007/978-3-662-05018-7. |
[14] |
D. Iglesias, J. C. Marrero, Martín de Diego and E. Martínez, Discrete nonholonomic Lagrangian systems on Lie groupoids,, Journal of Nonlinear Sciences, 18 (2008), 221.
doi: 10.1007/s00332-007-9012-8. |
[15] |
Kobilarov M, D. Martín de Diego and S. Ferraro, Simulating nonholonomic dynamics,, Boletín de la Sociedad de Matemática Aplicada SeMA, 50 (2010), 61.
|
[16] |
J. Koiller, Reduction of some classical nonholonomic systems with symmetry,, Arch. Rational Mech. Anal., 118 (1992), 113.
doi: 10.1007/BF00375092. |
[17] |
W. S. Koon and J. E. Marsden, Poisson reduction for nonholonomic mechanical systems with symmetry,, Rep. Math. Phys., 42 (1998), 101.
doi: 10.1016/S0034-4877(98)80007-4. |
[18] |
K. Hüper and F. Silva Leite, On the geometry of rolling and interpolating curves on $S^n$, $SO_n$ and Grassman manifolds,, Journal of Dynamical and Control Systems, 13 (2007), 467.
doi: 10.1007/s10883-007-9027-3. |
[19] |
M. de León and D. Martín de Diego, On the geometry of nonholonomic Lagrangian systems,, J. Math. Phys., 37 (1996), 3389.
doi: 10.1063/1.531571. |
[20] |
R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems,, J. Nonlinear Science, 16 (2006), 283.
doi: 10.1007/s00332-005-0698-1. |
[21] |
J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, 10 (2001), 357.
doi: 10.1017/S096249290100006X. |
[22] |
J. Moser and A. P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials,, Comm. Math. Phys., 139 (1991), 217.
doi: 10.1007/BF02352494. |
[23] |
P. J. Rabier and W. C. Rheinboldt, A geometric treatment of implicit differential-algebraic equations,, Journal of Differential Equations, 109 (1994), 110.
doi: 10.1006/jdeq.1994.1046. |
[24] |
P. J. Rabier and W. C. Rheinboldt, Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint,, Society for Industrial and Applied Mathematics, (1987). Google Scholar |
[25] |
S. Reich, On an existence and uniqueness theory for nonlinear differential-algebraic equations,, Circuits, 11 (1992).
doi: 10.1007/BF01189230. |
[26] |
S. Reich, On a geometrical interpretation of differential-algebraic equations,, Circuits, 10 (1991), 343.
doi: 10.1007/BF01187550. |
[27] |
W. C. Rheinboldt, Differential-algebraic systems as differential equations on manifolds,, Mathematics of Computation, 43 (1984), 473.
doi: 10.1090/S0025-5718-1984-0758195-5. |
[1] |
Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033 |
[2] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[3] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[4] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[5] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[6] |
Sana Netchaoui, Mohamed Ali Hammami, Tomás Caraballo. Pullback exponential attractors for differential equations with delay. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1345-1358. doi: 10.3934/dcdss.2020367 |
[7] |
Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021008 |
[8] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[9] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[10] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
[11] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[12] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[13] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[14] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[15] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[16] |
Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021019 |
[17] |
Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029 |
[18] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[19] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[20] |
Aisling McGlinchey, Oliver Mason. Observations on the bias of nonnegative mechanisms for differential privacy. Foundations of Data Science, 2020, 2 (4) : 429-442. doi: 10.3934/fods.2020020 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]