• Previous Article
    A unifying mechanical equation with applications to non-holonomic constraints and dissipative phenomena
  • JGM Home
  • This Issue
  • Next Article
    Symmetry reduction, integrability and reconstruction in $k$-symplectic field theory
December  2015, 7(4): 431-471. doi: 10.3934/jgm.2015.7.431

Geometric arbitrage theory and market dynamics

1. 

Core Dynamics GmbH, Scheuchzerstrasse 43, CH-8006, Zurich, Switzerland

Received  December 2011 Revised  August 2015 Published  October 2015

We have embedded the classical theory of stochastic finance into a differential geometric framework called Geometric Arbitrage Theory and show that it is possible to:
    $\bullet$ Write arbitrage as curvature of a principal fibre bundle.
    $\bullet$ Parameterize arbitrage strategies by its holonomy.
    $\bullet$ Give the Fundamental Theorem of Asset Pricing a differential homotopic characterization.
    $\bullet$ Characterize Geometric Arbitrage Theory by five principles and show they are consistent with the classical theory of stochastic finance.
    $\bullet$ Derive for a closed market the equilibrium solution for market portfolio and dynamics in the cases where:
       - Arbitrage is allowed but minimized.
       - Arbitrage is not allowed.
    $\bullet$ Prove that the no-free-lunch-with-vanishing-risk condition implies the zero curvature condition. The converse is in general not true and additionally requires the Novikov condition for the instantaneous Sharpe Ratio to be satisfied.
Citation: Simone Farinelli. Geometric arbitrage theory and market dynamics. Journal of Geometric Mechanics, 2015, 7 (4) : 431-471. doi: 10.3934/jgm.2015.7.431
References:
[1]

V. I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, Second Edition, Springer, 1989. doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[2]

F. Bellini and M. Frittelli, On the existence of minimax martingale measures, Mathematical Finance, 12 (2002), 1-21. doi: 10.1111/1467-9965.00001.  Google Scholar

[3]

T. Björk, Arbitrage Theory in Continuous Time, Oxford Finance, Second Edition, 2004. Google Scholar

[4]

T. Björk and H. Hult, A note on Wick products and the fractional Black-Scholes model, Finance & Stochastics, 9 (2005), 197-209. doi: 10.1007/s00780-004-0144-5.  Google Scholar

[5]

D. Bleecker, Gauge Theory and Variational Principles, Addison-Wesley Publishing, 1981, (republished by Dover 2005).  Google Scholar

[6]

J. Cresson and S. Darses, Stochastic embedding of dynamical systems, J. Math. Phys., 48 (2007), 072703, 54 pp. doi: 10.1063/1.2736519.  Google Scholar

[7]

F. Delbaen and W. Schachermayer, The Mathematics of Arbitrage, Springer-Verlag, Berlin, 2006.  Google Scholar

[8]

B. A. Dubrovin, A. T. Fomenko and S. P. Novikov, Modern Geometry-Methods and Applications: Part II. The Geometry and Topology of Manifolds, Graduate Texts in Mathematics, 104. Springer-Verlag, New York, 1985. doi: 10.1007/978-1-4612-1100-6.  Google Scholar

[9]

B. Dupoyet, H. R. Fiebig and D. P. Musgrov, Gauge invariant lattice quantum field theory: Implications for statistical properties of high frequency financial markets, Physica A, 389 (2010), 107-116. doi: 10.1016/j.physa.2009.09.002.  Google Scholar

[10]

C. Dellachérie and P. A. Meyer, Probabilité et Potentiel II - Théorie des Martingales - Chapitres 5 à 8, Hermann, 1980.  Google Scholar

[11]

K. D. Elworthy, Stochastic Differential Equations on Manifolds, London Mathematical Society Lecture Notes Series, 1982.  Google Scholar

[12]

M. Eméry, Stochastic Calculus on Manifolds-With an Appendix by P. A. Meyer, Springer, 1989. doi: 10.1007/978-3-642-75051-9.  Google Scholar

[13]

S. Farinelli and S. Vazquez, Gauge invariance, geometry and arbitrage, The Journal of Investment Strategies, Wiley, Spring, 1 (2012), 23-66. Google Scholar

[14]

M. Fei-Te and M. Jin-Long, Solitary wave solutions of nonlinear financial markets: Data-modeling-concept-practicing, Front. Phys. China, 2 (2007), 368-374. Google Scholar

[15]

B. Flesaker and L. Hughston, Positive Interest, Risk, 9 (1996), 36-40. Google Scholar

[16]

H. Föllmer and A. Schied, Stochastic Finance: An Introduction In Discrete Time, Second Edition, De Gruyter Studies in Mathematics, 2004. doi: 10.1515/9783110212075.  Google Scholar

[17]

Y. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Theoretical and Mathemtical Physics, Springer, 2011. doi: 10.1007/978-0-85729-163-9.  Google Scholar

[18]

W. Hackenbroch and A. Thalmaier, Stochastische Analysis. Eine Einführung in die Theorie der stetigen Semimartingale, Teubner Verlag, 1994. doi: 10.1007/978-3-663-11527-4.  Google Scholar

[19]

L. Hörmander, The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Springer, 2003.  Google Scholar

[20]

E. P. Hsu, Stochastic Analysis on Manifolds, Graduate Studies in Mathematics, 38, AMS, 2002. doi: 10.1090/gsm/038.  Google Scholar

[21]

P. J. Hunt and J. E. Kennedy, Financial Derivatives in Theory and Practice, Wiley Series in Probability and Statistics, 2004. doi: 10.1002/0470863617.  Google Scholar

[22]

K. Ilinski, Gauge geometry of financial markets, J. Phys. A: Math. Gen., 33 (2000), L5-L14. doi: 10.1088/0305-4470/33/1/102.  Google Scholar

[23]

K. Ilinski, Physics of Finance: Gauge Modelling in Non-Equilibrium Pricing, Wiley, 2001. Google Scholar

[24]

J. D. Jackson, Classical Electrodynamics, Third Edition, Wiley, 1998. Google Scholar

[25]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Volume I, Wiley, 1996.  Google Scholar

[26]

P. N. Malaney, The Index Number Problem: A Differential Geometric Approach, PhD Thesis, Harvard University Economics Department, 1997.  Google Scholar

[27]

Y. Morisawa, Toward a geometric formulation of triangular arbitrage: An introduction to gauge theory of arbitrage, Progress of Theoretical Physics Supplement, 179 (2009), 209-215. doi: 10.1143/PTPS.179.209.  Google Scholar

[28]

E. Nelson, Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, N.J. 1967.  Google Scholar

[29]

Ph. E. Protter, Stochastic Integration and Differential Equations: Version 2.1, Stochastic Modelling and Applied Probability, 21. Springer-Verlag, Berlin, 2005.  Google Scholar

[30]

L. C. G. Rogers, Equivalent martingale measures and no-arbitrage, Stochastics, Stochastics Rep., 51 (1994), 41-49. doi: 10.1080/17442509408833943.  Google Scholar

[31]

W. Schachermayer, Optimal investment in incomplete markets when wealth may become negative, Annals of Applied Probability, 11 (2001), 694-734. doi: 10.1214/aoap/1015345346.  Google Scholar

[32]

L. Schwartz, Semi-martingales Sur des Variétés et Martingales Conformes sur des Variétés Analytiques Complexes, Springer Lecture Notes in Mathematics, 1980.  Google Scholar

[33]

S. E. Shreve, Stochastic Calculus for Finance, Springer-Verlag, New York, 2004.  Google Scholar

[34]

M. Šilhavý, The Mechanics and Thermodynamics of Continuous Media, Texts and Monographs in Physics. Springer-Verlag, Berlin, 1997.  Google Scholar

[35]

A. Smith and C. Speed, Gauge Transforms in Stochastic Investment, Proceedings of the 1998 AFIR Colloquim, Cambridge, England, 1998. Google Scholar

[36]

S. Sternberg, Lectures On Differential Geometry, Second Edition, Chelsea Publishing Co., New York, 1983.  Google Scholar

[37]

D. W. Stroock, An Introduction to the Analysis of Paths on a Riemannian Manifold, Mathematical Surveys and Monographs, 74, AMS, 2000.  Google Scholar

[38]

E. Weinstein, Gauge theory and inflation: Enlarging the Wu-Yang Dictionary to a unifying Rosetta Stone for Geometry in Application, Talk given at Perimeter Institute, 2006. Google Scholar

[39]

K. Yasue, Stochastic calculus of variations, Journal of Functional Analysis, 41 (1981), 327-340. doi: 10.1016/0022-1236(81)90079-3.  Google Scholar

[40]

K. Young, Foreign exchange market as a lattice gauge theory, Am. J. Phys., 67 (1999), p862. doi: 10.1119/1.19139.  Google Scholar

show all references

References:
[1]

V. I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, Second Edition, Springer, 1989. doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[2]

F. Bellini and M. Frittelli, On the existence of minimax martingale measures, Mathematical Finance, 12 (2002), 1-21. doi: 10.1111/1467-9965.00001.  Google Scholar

[3]

T. Björk, Arbitrage Theory in Continuous Time, Oxford Finance, Second Edition, 2004. Google Scholar

[4]

T. Björk and H. Hult, A note on Wick products and the fractional Black-Scholes model, Finance & Stochastics, 9 (2005), 197-209. doi: 10.1007/s00780-004-0144-5.  Google Scholar

[5]

D. Bleecker, Gauge Theory and Variational Principles, Addison-Wesley Publishing, 1981, (republished by Dover 2005).  Google Scholar

[6]

J. Cresson and S. Darses, Stochastic embedding of dynamical systems, J. Math. Phys., 48 (2007), 072703, 54 pp. doi: 10.1063/1.2736519.  Google Scholar

[7]

F. Delbaen and W. Schachermayer, The Mathematics of Arbitrage, Springer-Verlag, Berlin, 2006.  Google Scholar

[8]

B. A. Dubrovin, A. T. Fomenko and S. P. Novikov, Modern Geometry-Methods and Applications: Part II. The Geometry and Topology of Manifolds, Graduate Texts in Mathematics, 104. Springer-Verlag, New York, 1985. doi: 10.1007/978-1-4612-1100-6.  Google Scholar

[9]

B. Dupoyet, H. R. Fiebig and D. P. Musgrov, Gauge invariant lattice quantum field theory: Implications for statistical properties of high frequency financial markets, Physica A, 389 (2010), 107-116. doi: 10.1016/j.physa.2009.09.002.  Google Scholar

[10]

C. Dellachérie and P. A. Meyer, Probabilité et Potentiel II - Théorie des Martingales - Chapitres 5 à 8, Hermann, 1980.  Google Scholar

[11]

K. D. Elworthy, Stochastic Differential Equations on Manifolds, London Mathematical Society Lecture Notes Series, 1982.  Google Scholar

[12]

M. Eméry, Stochastic Calculus on Manifolds-With an Appendix by P. A. Meyer, Springer, 1989. doi: 10.1007/978-3-642-75051-9.  Google Scholar

[13]

S. Farinelli and S. Vazquez, Gauge invariance, geometry and arbitrage, The Journal of Investment Strategies, Wiley, Spring, 1 (2012), 23-66. Google Scholar

[14]

M. Fei-Te and M. Jin-Long, Solitary wave solutions of nonlinear financial markets: Data-modeling-concept-practicing, Front. Phys. China, 2 (2007), 368-374. Google Scholar

[15]

B. Flesaker and L. Hughston, Positive Interest, Risk, 9 (1996), 36-40. Google Scholar

[16]

H. Föllmer and A. Schied, Stochastic Finance: An Introduction In Discrete Time, Second Edition, De Gruyter Studies in Mathematics, 2004. doi: 10.1515/9783110212075.  Google Scholar

[17]

Y. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Theoretical and Mathemtical Physics, Springer, 2011. doi: 10.1007/978-0-85729-163-9.  Google Scholar

[18]

W. Hackenbroch and A. Thalmaier, Stochastische Analysis. Eine Einführung in die Theorie der stetigen Semimartingale, Teubner Verlag, 1994. doi: 10.1007/978-3-663-11527-4.  Google Scholar

[19]

L. Hörmander, The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Springer, 2003.  Google Scholar

[20]

E. P. Hsu, Stochastic Analysis on Manifolds, Graduate Studies in Mathematics, 38, AMS, 2002. doi: 10.1090/gsm/038.  Google Scholar

[21]

P. J. Hunt and J. E. Kennedy, Financial Derivatives in Theory and Practice, Wiley Series in Probability and Statistics, 2004. doi: 10.1002/0470863617.  Google Scholar

[22]

K. Ilinski, Gauge geometry of financial markets, J. Phys. A: Math. Gen., 33 (2000), L5-L14. doi: 10.1088/0305-4470/33/1/102.  Google Scholar

[23]

K. Ilinski, Physics of Finance: Gauge Modelling in Non-Equilibrium Pricing, Wiley, 2001. Google Scholar

[24]

J. D. Jackson, Classical Electrodynamics, Third Edition, Wiley, 1998. Google Scholar

[25]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Volume I, Wiley, 1996.  Google Scholar

[26]

P. N. Malaney, The Index Number Problem: A Differential Geometric Approach, PhD Thesis, Harvard University Economics Department, 1997.  Google Scholar

[27]

Y. Morisawa, Toward a geometric formulation of triangular arbitrage: An introduction to gauge theory of arbitrage, Progress of Theoretical Physics Supplement, 179 (2009), 209-215. doi: 10.1143/PTPS.179.209.  Google Scholar

[28]

E. Nelson, Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, N.J. 1967.  Google Scholar

[29]

Ph. E. Protter, Stochastic Integration and Differential Equations: Version 2.1, Stochastic Modelling and Applied Probability, 21. Springer-Verlag, Berlin, 2005.  Google Scholar

[30]

L. C. G. Rogers, Equivalent martingale measures and no-arbitrage, Stochastics, Stochastics Rep., 51 (1994), 41-49. doi: 10.1080/17442509408833943.  Google Scholar

[31]

W. Schachermayer, Optimal investment in incomplete markets when wealth may become negative, Annals of Applied Probability, 11 (2001), 694-734. doi: 10.1214/aoap/1015345346.  Google Scholar

[32]

L. Schwartz, Semi-martingales Sur des Variétés et Martingales Conformes sur des Variétés Analytiques Complexes, Springer Lecture Notes in Mathematics, 1980.  Google Scholar

[33]

S. E. Shreve, Stochastic Calculus for Finance, Springer-Verlag, New York, 2004.  Google Scholar

[34]

M. Šilhavý, The Mechanics and Thermodynamics of Continuous Media, Texts and Monographs in Physics. Springer-Verlag, Berlin, 1997.  Google Scholar

[35]

A. Smith and C. Speed, Gauge Transforms in Stochastic Investment, Proceedings of the 1998 AFIR Colloquim, Cambridge, England, 1998. Google Scholar

[36]

S. Sternberg, Lectures On Differential Geometry, Second Edition, Chelsea Publishing Co., New York, 1983.  Google Scholar

[37]

D. W. Stroock, An Introduction to the Analysis of Paths on a Riemannian Manifold, Mathematical Surveys and Monographs, 74, AMS, 2000.  Google Scholar

[38]

E. Weinstein, Gauge theory and inflation: Enlarging the Wu-Yang Dictionary to a unifying Rosetta Stone for Geometry in Application, Talk given at Perimeter Institute, 2006. Google Scholar

[39]

K. Yasue, Stochastic calculus of variations, Journal of Functional Analysis, 41 (1981), 327-340. doi: 10.1016/0022-1236(81)90079-3.  Google Scholar

[40]

K. Young, Foreign exchange market as a lattice gauge theory, Am. J. Phys., 67 (1999), p862. doi: 10.1119/1.19139.  Google Scholar

[1]

Tomasz R. Bielecki, Igor Cialenco, Marek Rutkowski. Arbitrage-free pricing of derivatives in nonlinear market models. Probability, Uncertainty and Quantitative Risk, 2018, 3 (0) : 2-. doi: 10.1186/s41546-018-0027-x

[2]

Patrick Beißner, Emanuela Rosazza Gianin. The term structure of sharpe ratios and arbitrage-free asset pricing in continuous time. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 23-52. doi: 10.3934/puqr.2021002

[3]

Ulrike Kant, Werner M. Seiler. Singularities in the geometric theory of differential equations. Conference Publications, 2011, 2011 (Special) : 784-793. doi: 10.3934/proc.2011.2011.784

[4]

Rod Cross, Victor Kozyakin. Double exponential instability of triangular arbitrage systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 349-376. doi: 10.3934/dcdsb.2013.18.349

[5]

Alexander Schied, Iryna Voloshchenko. Pathwise no-arbitrage in a class of Delta hedging strategies. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 3-. doi: 10.1186/s41546-016-0003-2

[6]

Lisa C Flatley, Robert S MacKay, Michael Waterson. Optimal strategies for operating energy storage in an arbitrage or smoothing market. Journal of Dynamics & Games, 2016, 3 (4) : 371-398. doi: 10.3934/jdg.2016020

[7]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[8]

María Teresa V. Martínez-Palacios, Adrián Hernández-Del-Valle, Ambrosio Ortiz-Ramírez. On the pricing of Asian options with geometric average of American type with stochastic interest rate: A stochastic optimal control approach. Journal of Dynamics & Games, 2019, 6 (1) : 53-64. doi: 10.3934/jdg.2019004

[9]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[10]

Andrew D. Lewis, David R. Tyner. Geometric Jacobian linearization and LQR theory. Journal of Geometric Mechanics, 2010, 2 (4) : 397-440. doi: 10.3934/jgm.2010.2.397

[11]

Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437-497. doi: 10.3934/jmd.2014.8.437

[12]

Mazyar Ghani Varzaneh, Sebastian Riedel. A dynamical theory for singular stochastic delay differential equations Ⅱ: nonlinear equations and invariant manifolds. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4587-4612. doi: 10.3934/dcdsb.2020304

[13]

Robert J. McCann. A glimpse into the differential topology and geometry of optimal transport. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1605-1621. doi: 10.3934/dcds.2014.34.1605

[14]

Jia Yue, Nan-Jing Huang. Neutral and indifference pricing with stochastic correlation and volatility. Journal of Industrial & Management Optimization, 2018, 14 (1) : 199-229. doi: 10.3934/jimo.2017043

[15]

Farid Tari. Geometric properties of the integral curves of an implicit differential equation. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 349-364. doi: 10.3934/dcds.2007.17.349

[16]

Penka Georgieva, Aleksey Zinger. Real orientations, real Gromov-Witten theory, and real enumerative geometry. Electronic Research Announcements, 2017, 24: 87-99. doi: 10.3934/era.2017.24.010

[17]

Elie Assémat, Marc Lapert, Dominique Sugny, Steffen J. Glaser. On the application of geometric optimal control theory to Nuclear Magnetic Resonance. Mathematical Control & Related Fields, 2013, 3 (4) : 375-396. doi: 10.3934/mcrf.2013.3.375

[18]

Wen Chen, Song Wang. A finite difference method for pricing European and American options under a geometric Lévy process. Journal of Industrial & Management Optimization, 2015, 11 (1) : 241-264. doi: 10.3934/jimo.2015.11.241

[19]

Walter Farkas, Ludovic Mathys. Geometric step options and lévy models: duality, pides, and semi-analytical pricing. Frontiers of Mathematical Finance, , () : -. doi: 10.3934/fmf.2021001

[20]

Seunghee Lee, Ganguk Hwang. A new analytical model for optimized cognitive radio networks based on stochastic geometry. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1883-1899. doi: 10.3934/jimo.2017023

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]