December  2015, 7(4): 483-515. doi: 10.3934/jgm.2015.7.483

Canonoid and Poissonoid transformations, symmetries and biHamiltonian structures

1. 

Dipartimento di Matematica, Università di Torino, Torino, via Carlo Alberto 10, Italy

2. 

Department of Mathematics, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, Canada

Received  July 2014 Revised  July 2015 Published  October 2015

We give a characterization of linear canonoid transformations on symplectic manifolds and we use it to generate biHamiltonian structures for some mechanical systems. Using this characterization we also study the behavior of the harmonic oscillator under canonoid transformations. We present a description of canonoid transformations due to E.T. Whittaker, and we show that it leads, in a natural way, to the modern, coordinate-independent definition of canonoid transformations. We also generalize canonoid transformations to Poisson manifolds by introducing Poissonoid transformations. We give examples of such transformations for Euler's equations of the rigid body (on $ \mathfrak{ so}^\ast (3) $ and $ \mathfrak{ so}^\ast (4)$) and for an integrable case of Kirchhoff's equations for the motion of a rigid body immersed in an ideal fluid. We study the relationship between biHamiltonian structures and Poissonoid transformations for these examples. We analyze the link between Poissonoid transformations, constants of motion, and symmetries.
Citation: Giovanni Rastelli, Manuele Santoprete. Canonoid and Poissonoid transformations, symmetries and biHamiltonian structures. Journal of Geometric Mechanics, 2015, 7 (4) : 483-515. doi: 10.3934/jgm.2015.7.483
References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, American Mathematical Soc., (1978).   Google Scholar

[2]

A. V. Bolsinov, Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution,, Mathematics of the USSR-Izvestiya, 38 (1992), 69.   Google Scholar

[3]

J. F. Cariñena, F. Falceto and M. F. Rañada, Canonoid transformations and master symmetries,, Journal of Geometric Mechanics, 5 (2013), 151.  doi: 10.3934/jgm.2013.5.151.  Google Scholar

[4]

J. F. Cariñena and M. F. Rañada, Canonoid transformations from a geometric perspective,, Journal of Mathematical Physics, 29 (1988), 2181.  doi: 10.1063/1.528146.  Google Scholar

[5]

J. F. Cariñena and M. F. Rañada, Generating functions, bi-Hamiltonian systems, and the quadratic-Hamiltonian theorem,, Journal of Mathematical Physics, 31 (1990), 801.  doi: 10.1063/1.529028.  Google Scholar

[6]

Y. Choquet-Bruhat, Analysis, Manifolds and Physics, Part II - Revised and Enlarged Edition,, Elsevier, (2000).   Google Scholar

[7]

D. G. Currie and E. J. Saletan, Canonical transformations and quadratic hamiltonians,, II Nuovo Cimento B Series 11, 9 (1972), 143.  doi: 10.1007/BF02735514.  Google Scholar

[8]

C. Daskaloyannis and K. Ypsilantis, Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold,, Journal of Mathematical Physics, 47 (2006).  doi: 10.1063/1.2192967.  Google Scholar

[9]

G. Falqui, A note on the rotationally symmetric SO(4) Euler rigid body,, Symmetry, 3 (2007).  doi: 10.3842/SIGMA.2007.032.  Google Scholar

[10]

A. Fasano and S. Marmi, Analytical Mechanics : An Introduction,, Oxford University Press, (2006).   Google Scholar

[11]

A. T. Fomenko, Integrability and Nonintegrability in Geometry and Mechanics,, Kluwer Academic Publishers, (1988).  doi: 10.1007/978-94-009-3069-8.  Google Scholar

[12]

J. M. Jauch and E. L. Hill, On the problem of degeneracy} in quantum mechanics,, Physical Review, 57 (1940), 641.  doi: 10.1103/PhysRev.57.641.  Google Scholar

[13]

E. G. Kalnins, J. M. Kress, G. S. Pogosyan and W. Miller, Jr, Completeness of superintegrability in two-dimensional constant-curvature spaces,, Journal of Physics A: Mathematical and General, 34 (2001), 4705.  doi: 10.1088/0305-4470/34/22/311.  Google Scholar

[14]

G. Landolfi and G. Soliani, On certain canonoid transformations and invariants for the parametric oscillator,, Journal of Physics A: Mathematical and Theoretical, 40 (2007), 3413.  doi: 10.1088/1751-8113/40/13/009.  Google Scholar

[15]

C. Laurent-Gengoux, A. Pichereau and P. Vanhaecke, Poisson Structures,, Grundlehren der mathematischen Wissenschaften, (2013).  doi: 10.1007/978-3-642-31090-4.  Google Scholar

[16]

P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics,, Springer, (1987).  doi: 10.1007/978-94-009-3807-6.  Google Scholar

[17]

F. Magri, P. Casati, G. Falqui and M. Pedroni, Eight lectures on integrable systems,, in Integrability of Nonlinear Systems (eds. Y. Kosmann-Schwarzbach, (2004), 209.   Google Scholar

[18]

F. Magri, A simple model of the integrable Hamiltonian equation,, Journal of Mathematical Physics, 19 (1978), 1156.  doi: 10.1063/1.523777.  Google Scholar

[19]

G. Marmo, Equivalent Lagrangians and quasicanonical transformations,, in Group Theoretical Methods in Physics (eds. A. Janner, 50 (1976), 568.   Google Scholar

[20]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems,, Springer, (1999).   Google Scholar

[21]

C. C. Moore and C. Schochet, Tangential cohomology,, in Global Analysis on Foliated Spaces, (1988), 68.   Google Scholar

[22]

C. Morosi and L. Pizzocchero, On the Euler equation: Bi-Hamiltonian structure and integrals in involution,, Letters in Mathematical Physics, 37 (1996), 117.  doi: 10.1007/BF00416015.  Google Scholar

[23]

L. J. Negri, L. C. Oliveira and J. M. Teixeira, Canonoid transformations and constants of motion,, Journal of Mathematical Physics, 28 (1987), 2369.  doi: 10.1063/1.527772.  Google Scholar

[24]

H. Poincaré, Sur le probléme des trois corps et les équations de la dynamique,, Acta Mathematica, 13 (1890), 1.   Google Scholar

[25]

G. Rudolph and M. Schmidt, Differential Geometry and Mathematical Physics: Part I. Manifolds, Lie Groups and Hamiltonian Systems,, Springer, (2013).  doi: 10.1007/978-94-007-5345-7.  Google Scholar

[26]

E. J. Saletan and A. H. Cromer, Theoretical Mechanics,, Wiley, (1971).   Google Scholar

[27]

P. Tempesta, E. Alfinito, R. A. Leo and G. Soliani, Quantum models related to fouled Hamiltonians of the harmonic oscillator,, Journal of Mathematical Physics, 43 (2002), 3538.  doi: 10.1063/1.1479300.  Google Scholar

[28]

I. Vaisman, Lectures on the Geometry of Poisson Manifolds,, Springer, (1994).  doi: 10.1007/978-3-0348-8495-2.  Google Scholar

[29]

F. J. D. Vegas, On the canonical transformation theorem of Currie and Saletan,, Journal of Physics A: Mathematical and General, 22 (1989), 1927.  doi: 10.1088/0305-4470/22/11/029.  Google Scholar

[30]

E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies,, Cambridge University Press, (1988).  doi: 10.1017/CBO9780511608797.  Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, American Mathematical Soc., (1978).   Google Scholar

[2]

A. V. Bolsinov, Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution,, Mathematics of the USSR-Izvestiya, 38 (1992), 69.   Google Scholar

[3]

J. F. Cariñena, F. Falceto and M. F. Rañada, Canonoid transformations and master symmetries,, Journal of Geometric Mechanics, 5 (2013), 151.  doi: 10.3934/jgm.2013.5.151.  Google Scholar

[4]

J. F. Cariñena and M. F. Rañada, Canonoid transformations from a geometric perspective,, Journal of Mathematical Physics, 29 (1988), 2181.  doi: 10.1063/1.528146.  Google Scholar

[5]

J. F. Cariñena and M. F. Rañada, Generating functions, bi-Hamiltonian systems, and the quadratic-Hamiltonian theorem,, Journal of Mathematical Physics, 31 (1990), 801.  doi: 10.1063/1.529028.  Google Scholar

[6]

Y. Choquet-Bruhat, Analysis, Manifolds and Physics, Part II - Revised and Enlarged Edition,, Elsevier, (2000).   Google Scholar

[7]

D. G. Currie and E. J. Saletan, Canonical transformations and quadratic hamiltonians,, II Nuovo Cimento B Series 11, 9 (1972), 143.  doi: 10.1007/BF02735514.  Google Scholar

[8]

C. Daskaloyannis and K. Ypsilantis, Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold,, Journal of Mathematical Physics, 47 (2006).  doi: 10.1063/1.2192967.  Google Scholar

[9]

G. Falqui, A note on the rotationally symmetric SO(4) Euler rigid body,, Symmetry, 3 (2007).  doi: 10.3842/SIGMA.2007.032.  Google Scholar

[10]

A. Fasano and S. Marmi, Analytical Mechanics : An Introduction,, Oxford University Press, (2006).   Google Scholar

[11]

A. T. Fomenko, Integrability and Nonintegrability in Geometry and Mechanics,, Kluwer Academic Publishers, (1988).  doi: 10.1007/978-94-009-3069-8.  Google Scholar

[12]

J. M. Jauch and E. L. Hill, On the problem of degeneracy} in quantum mechanics,, Physical Review, 57 (1940), 641.  doi: 10.1103/PhysRev.57.641.  Google Scholar

[13]

E. G. Kalnins, J. M. Kress, G. S. Pogosyan and W. Miller, Jr, Completeness of superintegrability in two-dimensional constant-curvature spaces,, Journal of Physics A: Mathematical and General, 34 (2001), 4705.  doi: 10.1088/0305-4470/34/22/311.  Google Scholar

[14]

G. Landolfi and G. Soliani, On certain canonoid transformations and invariants for the parametric oscillator,, Journal of Physics A: Mathematical and Theoretical, 40 (2007), 3413.  doi: 10.1088/1751-8113/40/13/009.  Google Scholar

[15]

C. Laurent-Gengoux, A. Pichereau and P. Vanhaecke, Poisson Structures,, Grundlehren der mathematischen Wissenschaften, (2013).  doi: 10.1007/978-3-642-31090-4.  Google Scholar

[16]

P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics,, Springer, (1987).  doi: 10.1007/978-94-009-3807-6.  Google Scholar

[17]

F. Magri, P. Casati, G. Falqui and M. Pedroni, Eight lectures on integrable systems,, in Integrability of Nonlinear Systems (eds. Y. Kosmann-Schwarzbach, (2004), 209.   Google Scholar

[18]

F. Magri, A simple model of the integrable Hamiltonian equation,, Journal of Mathematical Physics, 19 (1978), 1156.  doi: 10.1063/1.523777.  Google Scholar

[19]

G. Marmo, Equivalent Lagrangians and quasicanonical transformations,, in Group Theoretical Methods in Physics (eds. A. Janner, 50 (1976), 568.   Google Scholar

[20]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems,, Springer, (1999).   Google Scholar

[21]

C. C. Moore and C. Schochet, Tangential cohomology,, in Global Analysis on Foliated Spaces, (1988), 68.   Google Scholar

[22]

C. Morosi and L. Pizzocchero, On the Euler equation: Bi-Hamiltonian structure and integrals in involution,, Letters in Mathematical Physics, 37 (1996), 117.  doi: 10.1007/BF00416015.  Google Scholar

[23]

L. J. Negri, L. C. Oliveira and J. M. Teixeira, Canonoid transformations and constants of motion,, Journal of Mathematical Physics, 28 (1987), 2369.  doi: 10.1063/1.527772.  Google Scholar

[24]

H. Poincaré, Sur le probléme des trois corps et les équations de la dynamique,, Acta Mathematica, 13 (1890), 1.   Google Scholar

[25]

G. Rudolph and M. Schmidt, Differential Geometry and Mathematical Physics: Part I. Manifolds, Lie Groups and Hamiltonian Systems,, Springer, (2013).  doi: 10.1007/978-94-007-5345-7.  Google Scholar

[26]

E. J. Saletan and A. H. Cromer, Theoretical Mechanics,, Wiley, (1971).   Google Scholar

[27]

P. Tempesta, E. Alfinito, R. A. Leo and G. Soliani, Quantum models related to fouled Hamiltonians of the harmonic oscillator,, Journal of Mathematical Physics, 43 (2002), 3538.  doi: 10.1063/1.1479300.  Google Scholar

[28]

I. Vaisman, Lectures on the Geometry of Poisson Manifolds,, Springer, (1994).  doi: 10.1007/978-3-0348-8495-2.  Google Scholar

[29]

F. J. D. Vegas, On the canonical transformation theorem of Currie and Saletan,, Journal of Physics A: Mathematical and General, 22 (1989), 1927.  doi: 10.1088/0305-4470/22/11/029.  Google Scholar

[30]

E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies,, Cambridge University Press, (1988).  doi: 10.1017/CBO9780511608797.  Google Scholar

[1]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[2]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003

[5]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[6]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[7]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[8]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021004

[9]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[10]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[11]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[12]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[13]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[14]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[15]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[16]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[17]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[18]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[19]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[20]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]