December  2015, 7(4): 483-515. doi: 10.3934/jgm.2015.7.483

Canonoid and Poissonoid transformations, symmetries and biHamiltonian structures

1. 

Dipartimento di Matematica, Università di Torino, Torino, via Carlo Alberto 10, Italy

2. 

Department of Mathematics, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, Canada

Received  July 2014 Revised  July 2015 Published  October 2015

We give a characterization of linear canonoid transformations on symplectic manifolds and we use it to generate biHamiltonian structures for some mechanical systems. Using this characterization we also study the behavior of the harmonic oscillator under canonoid transformations. We present a description of canonoid transformations due to E.T. Whittaker, and we show that it leads, in a natural way, to the modern, coordinate-independent definition of canonoid transformations. We also generalize canonoid transformations to Poisson manifolds by introducing Poissonoid transformations. We give examples of such transformations for Euler's equations of the rigid body (on $ \mathfrak{ so}^\ast (3) $ and $ \mathfrak{ so}^\ast (4)$) and for an integrable case of Kirchhoff's equations for the motion of a rigid body immersed in an ideal fluid. We study the relationship between biHamiltonian structures and Poissonoid transformations for these examples. We analyze the link between Poissonoid transformations, constants of motion, and symmetries.
Citation: Giovanni Rastelli, Manuele Santoprete. Canonoid and Poissonoid transformations, symmetries and biHamiltonian structures. Journal of Geometric Mechanics, 2015, 7 (4) : 483-515. doi: 10.3934/jgm.2015.7.483
References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, American Mathematical Soc., (1978). Google Scholar

[2]

A. V. Bolsinov, Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution,, Mathematics of the USSR-Izvestiya, 38 (1992), 69. Google Scholar

[3]

J. F. Cariñena, F. Falceto and M. F. Rañada, Canonoid transformations and master symmetries,, Journal of Geometric Mechanics, 5 (2013), 151. doi: 10.3934/jgm.2013.5.151. Google Scholar

[4]

J. F. Cariñena and M. F. Rañada, Canonoid transformations from a geometric perspective,, Journal of Mathematical Physics, 29 (1988), 2181. doi: 10.1063/1.528146. Google Scholar

[5]

J. F. Cariñena and M. F. Rañada, Generating functions, bi-Hamiltonian systems, and the quadratic-Hamiltonian theorem,, Journal of Mathematical Physics, 31 (1990), 801. doi: 10.1063/1.529028. Google Scholar

[6]

Y. Choquet-Bruhat, Analysis, Manifolds and Physics, Part II - Revised and Enlarged Edition,, Elsevier, (2000). Google Scholar

[7]

D. G. Currie and E. J. Saletan, Canonical transformations and quadratic hamiltonians,, II Nuovo Cimento B Series 11, 9 (1972), 143. doi: 10.1007/BF02735514. Google Scholar

[8]

C. Daskaloyannis and K. Ypsilantis, Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold,, Journal of Mathematical Physics, 47 (2006). doi: 10.1063/1.2192967. Google Scholar

[9]

G. Falqui, A note on the rotationally symmetric SO(4) Euler rigid body,, Symmetry, 3 (2007). doi: 10.3842/SIGMA.2007.032. Google Scholar

[10]

A. Fasano and S. Marmi, Analytical Mechanics : An Introduction,, Oxford University Press, (2006). Google Scholar

[11]

A. T. Fomenko, Integrability and Nonintegrability in Geometry and Mechanics,, Kluwer Academic Publishers, (1988). doi: 10.1007/978-94-009-3069-8. Google Scholar

[12]

J. M. Jauch and E. L. Hill, On the problem of degeneracy} in quantum mechanics,, Physical Review, 57 (1940), 641. doi: 10.1103/PhysRev.57.641. Google Scholar

[13]

E. G. Kalnins, J. M. Kress, G. S. Pogosyan and W. Miller, Jr, Completeness of superintegrability in two-dimensional constant-curvature spaces,, Journal of Physics A: Mathematical and General, 34 (2001), 4705. doi: 10.1088/0305-4470/34/22/311. Google Scholar

[14]

G. Landolfi and G. Soliani, On certain canonoid transformations and invariants for the parametric oscillator,, Journal of Physics A: Mathematical and Theoretical, 40 (2007), 3413. doi: 10.1088/1751-8113/40/13/009. Google Scholar

[15]

C. Laurent-Gengoux, A. Pichereau and P. Vanhaecke, Poisson Structures,, Grundlehren der mathematischen Wissenschaften, (2013). doi: 10.1007/978-3-642-31090-4. Google Scholar

[16]

P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics,, Springer, (1987). doi: 10.1007/978-94-009-3807-6. Google Scholar

[17]

F. Magri, P. Casati, G. Falqui and M. Pedroni, Eight lectures on integrable systems,, in Integrability of Nonlinear Systems (eds. Y. Kosmann-Schwarzbach, (2004), 209. Google Scholar

[18]

F. Magri, A simple model of the integrable Hamiltonian equation,, Journal of Mathematical Physics, 19 (1978), 1156. doi: 10.1063/1.523777. Google Scholar

[19]

G. Marmo, Equivalent Lagrangians and quasicanonical transformations,, in Group Theoretical Methods in Physics (eds. A. Janner, 50 (1976), 568. Google Scholar

[20]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems,, Springer, (1999). Google Scholar

[21]

C. C. Moore and C. Schochet, Tangential cohomology,, in Global Analysis on Foliated Spaces, (1988), 68. Google Scholar

[22]

C. Morosi and L. Pizzocchero, On the Euler equation: Bi-Hamiltonian structure and integrals in involution,, Letters in Mathematical Physics, 37 (1996), 117. doi: 10.1007/BF00416015. Google Scholar

[23]

L. J. Negri, L. C. Oliveira and J. M. Teixeira, Canonoid transformations and constants of motion,, Journal of Mathematical Physics, 28 (1987), 2369. doi: 10.1063/1.527772. Google Scholar

[24]

H. Poincaré, Sur le probléme des trois corps et les équations de la dynamique,, Acta Mathematica, 13 (1890), 1. Google Scholar

[25]

G. Rudolph and M. Schmidt, Differential Geometry and Mathematical Physics: Part I. Manifolds, Lie Groups and Hamiltonian Systems,, Springer, (2013). doi: 10.1007/978-94-007-5345-7. Google Scholar

[26]

E. J. Saletan and A. H. Cromer, Theoretical Mechanics,, Wiley, (1971). Google Scholar

[27]

P. Tempesta, E. Alfinito, R. A. Leo and G. Soliani, Quantum models related to fouled Hamiltonians of the harmonic oscillator,, Journal of Mathematical Physics, 43 (2002), 3538. doi: 10.1063/1.1479300. Google Scholar

[28]

I. Vaisman, Lectures on the Geometry of Poisson Manifolds,, Springer, (1994). doi: 10.1007/978-3-0348-8495-2. Google Scholar

[29]

F. J. D. Vegas, On the canonical transformation theorem of Currie and Saletan,, Journal of Physics A: Mathematical and General, 22 (1989), 1927. doi: 10.1088/0305-4470/22/11/029. Google Scholar

[30]

E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies,, Cambridge University Press, (1988). doi: 10.1017/CBO9780511608797. Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, American Mathematical Soc., (1978). Google Scholar

[2]

A. V. Bolsinov, Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution,, Mathematics of the USSR-Izvestiya, 38 (1992), 69. Google Scholar

[3]

J. F. Cariñena, F. Falceto and M. F. Rañada, Canonoid transformations and master symmetries,, Journal of Geometric Mechanics, 5 (2013), 151. doi: 10.3934/jgm.2013.5.151. Google Scholar

[4]

J. F. Cariñena and M. F. Rañada, Canonoid transformations from a geometric perspective,, Journal of Mathematical Physics, 29 (1988), 2181. doi: 10.1063/1.528146. Google Scholar

[5]

J. F. Cariñena and M. F. Rañada, Generating functions, bi-Hamiltonian systems, and the quadratic-Hamiltonian theorem,, Journal of Mathematical Physics, 31 (1990), 801. doi: 10.1063/1.529028. Google Scholar

[6]

Y. Choquet-Bruhat, Analysis, Manifolds and Physics, Part II - Revised and Enlarged Edition,, Elsevier, (2000). Google Scholar

[7]

D. G. Currie and E. J. Saletan, Canonical transformations and quadratic hamiltonians,, II Nuovo Cimento B Series 11, 9 (1972), 143. doi: 10.1007/BF02735514. Google Scholar

[8]

C. Daskaloyannis and K. Ypsilantis, Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold,, Journal of Mathematical Physics, 47 (2006). doi: 10.1063/1.2192967. Google Scholar

[9]

G. Falqui, A note on the rotationally symmetric SO(4) Euler rigid body,, Symmetry, 3 (2007). doi: 10.3842/SIGMA.2007.032. Google Scholar

[10]

A. Fasano and S. Marmi, Analytical Mechanics : An Introduction,, Oxford University Press, (2006). Google Scholar

[11]

A. T. Fomenko, Integrability and Nonintegrability in Geometry and Mechanics,, Kluwer Academic Publishers, (1988). doi: 10.1007/978-94-009-3069-8. Google Scholar

[12]

J. M. Jauch and E. L. Hill, On the problem of degeneracy} in quantum mechanics,, Physical Review, 57 (1940), 641. doi: 10.1103/PhysRev.57.641. Google Scholar

[13]

E. G. Kalnins, J. M. Kress, G. S. Pogosyan and W. Miller, Jr, Completeness of superintegrability in two-dimensional constant-curvature spaces,, Journal of Physics A: Mathematical and General, 34 (2001), 4705. doi: 10.1088/0305-4470/34/22/311. Google Scholar

[14]

G. Landolfi and G. Soliani, On certain canonoid transformations and invariants for the parametric oscillator,, Journal of Physics A: Mathematical and Theoretical, 40 (2007), 3413. doi: 10.1088/1751-8113/40/13/009. Google Scholar

[15]

C. Laurent-Gengoux, A. Pichereau and P. Vanhaecke, Poisson Structures,, Grundlehren der mathematischen Wissenschaften, (2013). doi: 10.1007/978-3-642-31090-4. Google Scholar

[16]

P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics,, Springer, (1987). doi: 10.1007/978-94-009-3807-6. Google Scholar

[17]

F. Magri, P. Casati, G. Falqui and M. Pedroni, Eight lectures on integrable systems,, in Integrability of Nonlinear Systems (eds. Y. Kosmann-Schwarzbach, (2004), 209. Google Scholar

[18]

F. Magri, A simple model of the integrable Hamiltonian equation,, Journal of Mathematical Physics, 19 (1978), 1156. doi: 10.1063/1.523777. Google Scholar

[19]

G. Marmo, Equivalent Lagrangians and quasicanonical transformations,, in Group Theoretical Methods in Physics (eds. A. Janner, 50 (1976), 568. Google Scholar

[20]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems,, Springer, (1999). Google Scholar

[21]

C. C. Moore and C. Schochet, Tangential cohomology,, in Global Analysis on Foliated Spaces, (1988), 68. Google Scholar

[22]

C. Morosi and L. Pizzocchero, On the Euler equation: Bi-Hamiltonian structure and integrals in involution,, Letters in Mathematical Physics, 37 (1996), 117. doi: 10.1007/BF00416015. Google Scholar

[23]

L. J. Negri, L. C. Oliveira and J. M. Teixeira, Canonoid transformations and constants of motion,, Journal of Mathematical Physics, 28 (1987), 2369. doi: 10.1063/1.527772. Google Scholar

[24]

H. Poincaré, Sur le probléme des trois corps et les équations de la dynamique,, Acta Mathematica, 13 (1890), 1. Google Scholar

[25]

G. Rudolph and M. Schmidt, Differential Geometry and Mathematical Physics: Part I. Manifolds, Lie Groups and Hamiltonian Systems,, Springer, (2013). doi: 10.1007/978-94-007-5345-7. Google Scholar

[26]

E. J. Saletan and A. H. Cromer, Theoretical Mechanics,, Wiley, (1971). Google Scholar

[27]

P. Tempesta, E. Alfinito, R. A. Leo and G. Soliani, Quantum models related to fouled Hamiltonians of the harmonic oscillator,, Journal of Mathematical Physics, 43 (2002), 3538. doi: 10.1063/1.1479300. Google Scholar

[28]

I. Vaisman, Lectures on the Geometry of Poisson Manifolds,, Springer, (1994). doi: 10.1007/978-3-0348-8495-2. Google Scholar

[29]

F. J. D. Vegas, On the canonical transformation theorem of Currie and Saletan,, Journal of Physics A: Mathematical and General, 22 (1989), 1927. doi: 10.1088/0305-4470/22/11/029. Google Scholar

[30]

E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies,, Cambridge University Press, (1988). doi: 10.1017/CBO9780511608797. Google Scholar

[1]

José F. Cariñena, Fernando Falceto, Manuel F. Rañada. Canonoid transformations and master symmetries. Journal of Geometric Mechanics, 2013, 5 (2) : 151-166. doi: 10.3934/jgm.2013.5.151

[2]

Fiammetta Battaglia and Elisa Prato. Nonrational, nonsimple convex polytopes in symplectic geometry. Electronic Research Announcements, 2002, 8: 29-34.

[3]

Giuseppe Gaeta. On the geometry of twisted prolongations, and dynamical systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-19. doi: 10.3934/dcdss.2020070

[4]

Carlos Durán, Diego Otero. The projective symplectic geometry of higher order variational problems: Minimality conditions. Journal of Geometric Mechanics, 2016, 8 (3) : 305-322. doi: 10.3934/jgm.2016009

[5]

Petr Kůrka. Minimality in iterative systems of Möbius transformations. Conference Publications, 2011, 2011 (Special) : 903-912. doi: 10.3934/proc.2011.2011.903

[6]

Petr Kůrka. Iterative systems of real Möbius transformations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 567-574. doi: 10.3934/dcds.2009.25.567

[7]

Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447

[8]

I-Liang Chern, Chun-Hsiung Hsia. Dynamic phase transition for binary systems in cylindrical geometry. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 173-188. doi: 10.3934/dcdsb.2011.16.173

[9]

Michael Barnsley, James Keesling, Mrinal Kanti Roychowdhury. Special issue on fractal geometry, dynamical systems, and their applications. Discrete & Continuous Dynamical Systems - S, 2019, 12 (8) : ⅰ-ⅰ. doi: 10.3934/dcdss.201908i

[10]

Jacek Brzykcy, Krzysztof Frączek. Disjointness of interval exchange transformations from systems of probabilistic origin. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 53-73. doi: 10.3934/dcds.2010.27.53

[11]

Sarah Bailey Frick. Limited scope adic transformations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 269-285. doi: 10.3934/dcdss.2009.2.269

[12]

Alex L Castro, Wyatt Howard, Corey Shanbrom. Bridges between subriemannian geometry and algebraic geometry: Now and then. Conference Publications, 2015, 2015 (special) : 239-247. doi: 10.3934/proc.2015.0239

[13]

Hermann Brunner, Stefano Maset. Time transformations for delay differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 751-775. doi: 10.3934/dcds.2009.25.751

[14]

Vladimir V. Kisil. Mobius transformations and monogenic functional calculus. Electronic Research Announcements, 1996, 2: 26-33.

[15]

Benjamin Wincure, Alejandro D. Rey. Growth regimes in phase ordering transformations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 623-648. doi: 10.3934/dcdsb.2007.8.623

[16]

Carlos Gutierrez, Simon Lloyd, Vladislav Medvedev, Benito Pires, Evgeny Zhuzhoma. Transitive circle exchange transformations with flips. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 251-263. doi: 10.3934/dcds.2010.26.251

[17]

Ivan Dynnikov, Alexandra Skripchenko. Minimality of interval exchange transformations with restrictions. Journal of Modern Dynamics, 2017, 11: 219-248. doi: 10.3934/jmd.2017010

[18]

Joachim Escher, Boris Kolev, Marcus Wunsch. The geometry of a vorticity model equation. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1407-1419. doi: 10.3934/cpaa.2012.11.1407

[19]

Janina Kotus, Mariusz Urbański. The dynamics and geometry of the Fatou functions. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 291-338. doi: 10.3934/dcds.2005.13.291

[20]

Jean-Marc Couveignes, Reynald Lercier. The geometry of some parameterizations and encodings. Advances in Mathematics of Communications, 2014, 8 (4) : 437-458. doi: 10.3934/amc.2014.8.437

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]