Advanced Search
Article Contents
Article Contents

Invariant metrics on Lie groups

Abstract Related Papers Cited by
  • Index formulas for the curvature tensors of an invariant metric on a Lie group are obtained. The results are applied to the problem of characterizing invariant metrics of zero and non-zero constant curvature. Killing vector fields for such metrics are constructed and play an important role in the case of flat metrics.
    Mathematics Subject Classification: Primary: 22E60, 53B21, 22E27; Secondary: 57S99.


    \begin{equation} \\ \end{equation}
  • [1]

    M. Anderson, A survey of Einstein Metrics on 4-Dimensional Manifolds, Handbook of Geometric Analysis, 3, International Press, Boston, 2010.


    T. Arias-Marco and O. Kowalski, Classification of 4-dimensional homogeneous weakly Einstein manifolds, Czechoslovak Math. J., 65 (2015), 21-59.doi: 10.1007/s10587-015-0159-4.


    A. Besse, Einstein Manifolds, 1st ed., Springer, Berlin, Heidelberg, New York, 1987.doi: 10.1007/978-3-540-74311-8.


    S. Chen and K. Liang, Left-invariant pseudo-Einstein metrics on Lie groups, J. Nonlinear Math. Phys., 19 (2012), 1250015, 11pp.doi: 10.1142/S1402925112500155.


    Z. Chen, D. Hou and C. Bai, A left-symmetric algebraic approach to left invariant flat pseudo-metrics on Lie groups, J. Geom. Phys., 62 (2012), 1600-1610.doi: 10.1016/j.geomphys.2012.03.003.


    P. Gadea, J. González-Dávila and J. Oubina, Cyclic metric Lie groups, Monatsh. Math., 176 (2015), 219-239.doi: 10.1007/s00605-014-0692-5.


    M. Guediri, Novikov algebras carrying an invariant Lorentzian symmetric bilinear form, J. Geom. Phys., 82 (2014), 132-144.doi: 10.1016/j.geomphys.2014.04.007.


    F. Hindeleh and G. Thompson, Killing's equations for invariant metrics on Lie groups, Journal of Geometry and Mechanics, 3 (2011), 323-335.doi: 10.3934/jgm.2011.3.323.


    H. Kodama, A. Takahara and H. Tamaru, The space of left-invariant metrics on a Lie group up to isometry and scaling, Manuscripta Math., 135 (2011), 229-243.doi: 10.1007/s00229-010-0419-4.


    J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math., 21 (1976), 293-329.doi: 10.1016/S0001-8708(76)80002-3.


    J. Patera, R. T. Sharp, P. Winternitz and H. Zassenhaus, Invariants of real low dimension Lie algebras, J. Math. Phys., 17 (1976), 986-994.doi: 10.1063/1.522992.


    H. Wang and S. Deng, Left invariant Einstein-Randers metrics on compact Lie groups, Canad. Math. Bull., 55 (2012), 870-881.doi: 10.4153/CMB-2011-145-6.

  • 加载中

Article Metrics

HTML views() PDF downloads(1263) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint