December  2015, 7(4): 517-526. doi: 10.3934/jgm.2015.7.517

Invariant metrics on Lie groups

1. 

The University of Toledo, 2801 W Bancroft St., Toledo, OH 43606

Received  January 2015 Revised  August 2015 Published  October 2015

Index formulas for the curvature tensors of an invariant metric on a Lie group are obtained. The results are applied to the problem of characterizing invariant metrics of zero and non-zero constant curvature. Killing vector fields for such metrics are constructed and play an important role in the case of flat metrics.
Citation: Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517
References:
[1]

M. Anderson, A survey of Einstein Metrics on 4-Dimensional Manifolds, Handbook of Geometric Analysis, 3, International Press, Boston, 2010. Google Scholar

[2]

T. Arias-Marco and O. Kowalski, Classification of 4-dimensional homogeneous weakly Einstein manifolds, Czechoslovak Math. J., 65 (2015), 21-59. doi: 10.1007/s10587-015-0159-4.  Google Scholar

[3]

A. Besse, Einstein Manifolds, 1st ed., Springer, Berlin, Heidelberg, New York, 1987. doi: 10.1007/978-3-540-74311-8.  Google Scholar

[4]

S. Chen and K. Liang, Left-invariant pseudo-Einstein metrics on Lie groups, J. Nonlinear Math. Phys., 19 (2012), 1250015, 11pp. doi: 10.1142/S1402925112500155.  Google Scholar

[5]

Z. Chen, D. Hou and C. Bai, A left-symmetric algebraic approach to left invariant flat pseudo-metrics on Lie groups, J. Geom. Phys., 62 (2012), 1600-1610. doi: 10.1016/j.geomphys.2012.03.003.  Google Scholar

[6]

P. Gadea, J. González-Dávila and J. Oubina, Cyclic metric Lie groups, Monatsh. Math., 176 (2015), 219-239. doi: 10.1007/s00605-014-0692-5.  Google Scholar

[7]

M. Guediri, Novikov algebras carrying an invariant Lorentzian symmetric bilinear form, J. Geom. Phys., 82 (2014), 132-144. doi: 10.1016/j.geomphys.2014.04.007.  Google Scholar

[8]

F. Hindeleh and G. Thompson, Killing's equations for invariant metrics on Lie groups, Journal of Geometry and Mechanics, 3 (2011), 323-335. doi: 10.3934/jgm.2011.3.323.  Google Scholar

[9]

H. Kodama, A. Takahara and H. Tamaru, The space of left-invariant metrics on a Lie group up to isometry and scaling, Manuscripta Math., 135 (2011), 229-243. doi: 10.1007/s00229-010-0419-4.  Google Scholar

[10]

J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math., 21 (1976), 293-329. doi: 10.1016/S0001-8708(76)80002-3.  Google Scholar

[11]

J. Patera, R. T. Sharp, P. Winternitz and H. Zassenhaus, Invariants of real low dimension Lie algebras, J. Math. Phys., 17 (1976), 986-994. doi: 10.1063/1.522992.  Google Scholar

[12]

H. Wang and S. Deng, Left invariant Einstein-Randers metrics on compact Lie groups, Canad. Math. Bull., 55 (2012), 870-881. doi: 10.4153/CMB-2011-145-6.  Google Scholar

show all references

References:
[1]

M. Anderson, A survey of Einstein Metrics on 4-Dimensional Manifolds, Handbook of Geometric Analysis, 3, International Press, Boston, 2010. Google Scholar

[2]

T. Arias-Marco and O. Kowalski, Classification of 4-dimensional homogeneous weakly Einstein manifolds, Czechoslovak Math. J., 65 (2015), 21-59. doi: 10.1007/s10587-015-0159-4.  Google Scholar

[3]

A. Besse, Einstein Manifolds, 1st ed., Springer, Berlin, Heidelberg, New York, 1987. doi: 10.1007/978-3-540-74311-8.  Google Scholar

[4]

S. Chen and K. Liang, Left-invariant pseudo-Einstein metrics on Lie groups, J. Nonlinear Math. Phys., 19 (2012), 1250015, 11pp. doi: 10.1142/S1402925112500155.  Google Scholar

[5]

Z. Chen, D. Hou and C. Bai, A left-symmetric algebraic approach to left invariant flat pseudo-metrics on Lie groups, J. Geom. Phys., 62 (2012), 1600-1610. doi: 10.1016/j.geomphys.2012.03.003.  Google Scholar

[6]

P. Gadea, J. González-Dávila and J. Oubina, Cyclic metric Lie groups, Monatsh. Math., 176 (2015), 219-239. doi: 10.1007/s00605-014-0692-5.  Google Scholar

[7]

M. Guediri, Novikov algebras carrying an invariant Lorentzian symmetric bilinear form, J. Geom. Phys., 82 (2014), 132-144. doi: 10.1016/j.geomphys.2014.04.007.  Google Scholar

[8]

F. Hindeleh and G. Thompson, Killing's equations for invariant metrics on Lie groups, Journal of Geometry and Mechanics, 3 (2011), 323-335. doi: 10.3934/jgm.2011.3.323.  Google Scholar

[9]

H. Kodama, A. Takahara and H. Tamaru, The space of left-invariant metrics on a Lie group up to isometry and scaling, Manuscripta Math., 135 (2011), 229-243. doi: 10.1007/s00229-010-0419-4.  Google Scholar

[10]

J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math., 21 (1976), 293-329. doi: 10.1016/S0001-8708(76)80002-3.  Google Scholar

[11]

J. Patera, R. T. Sharp, P. Winternitz and H. Zassenhaus, Invariants of real low dimension Lie algebras, J. Math. Phys., 17 (1976), 986-994. doi: 10.1063/1.522992.  Google Scholar

[12]

H. Wang and S. Deng, Left invariant Einstein-Randers metrics on compact Lie groups, Canad. Math. Bull., 55 (2012), 870-881. doi: 10.4153/CMB-2011-145-6.  Google Scholar

[1]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[2]

Firas Hindeleh, Gerard Thompson. Killing's equations for invariant metrics on Lie groups. Journal of Geometric Mechanics, 2011, 3 (3) : 323-335. doi: 10.3934/jgm.2011.3.323

[3]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[4]

Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017

[5]

Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1115-1129. doi: 10.3934/dcdss.2020066

[6]

Dennis I. Barrett, Rory Biggs, Claudiu C. Remsing, Olga Rossi. Invariant nonholonomic Riemannian structures on three-dimensional Lie groups. Journal of Geometric Mechanics, 2016, 8 (2) : 139-167. doi: 10.3934/jgm.2016001

[7]

Javier Pérez Álvarez. Invariant structures on Lie groups. Journal of Geometric Mechanics, 2020, 12 (2) : 141-148. doi: 10.3934/jgm.2020007

[8]

Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014

[9]

Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 453-481. doi: 10.3934/cpaa.2014.13.453

[10]

Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete & Continuous Dynamical Systems, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977

[11]

Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495

[12]

Eduardo Martínez. Classical field theory on Lie algebroids: Multisymplectic formalism. Journal of Geometric Mechanics, 2018, 10 (1) : 93-138. doi: 10.3934/jgm.2018004

[13]

Pengliang Xu, Xiaomin Tang. Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, 2021, 29 (4) : 2771-2789. doi: 10.3934/era.2021013

[14]

Giulia Cavagnari, Antonio Marigonda. Measure-theoretic Lie brackets for nonsmooth vector fields. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 845-864. doi: 10.3934/dcdss.2018052

[15]

Carsten Collon, Joachim Rudolph, Frank Woittennek. Invariant feedback design for control systems with lie symmetries - A kinematic car example. Conference Publications, 2011, 2011 (Special) : 312-321. doi: 10.3934/proc.2011.2011.312

[16]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, 2021, 29 (3) : 2445-2456. doi: 10.3934/era.2020123

[17]

Ben Muatjetjeja, Dimpho Millicent Mothibi, Chaudry Masood Khalique. Lie group classification a generalized coupled (2+1)-dimensional hyperbolic system. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2803-2812. doi: 10.3934/dcdss.2020219

[18]

Michele Zadra, Elizabeth L. Mansfield. Using Lie group integrators to solve two and higher dimensional variational problems with symmetry. Journal of Computational Dynamics, 2019, 6 (2) : 485-511. doi: 10.3934/jcd.2019025

[19]

Lakehal Belarbi. Ricci solitons of the $ \mathbb{H}^{2} \times \mathbb{R} $ Lie group. Electronic Research Archive, 2020, 28 (1) : 157-163. doi: 10.3934/era.2020010

[20]

Patrick Foulon, Vladimir S. Matveev. Zermelo deformation of finsler metrics by killing vector fields. Electronic Research Announcements, 2018, 25: 1-7. doi: 10.3934/era.2018.25.001

2020 Impact Factor: 0.857

Metrics

  • PDF downloads (649)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]