December  2015, 7(4): 517-526. doi: 10.3934/jgm.2015.7.517

Invariant metrics on Lie groups

1. 

The University of Toledo, 2801 W Bancroft St., Toledo, OH 43606

Received  January 2015 Revised  August 2015 Published  October 2015

Index formulas for the curvature tensors of an invariant metric on a Lie group are obtained. The results are applied to the problem of characterizing invariant metrics of zero and non-zero constant curvature. Killing vector fields for such metrics are constructed and play an important role in the case of flat metrics.
Citation: Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517
References:
[1]

M. Anderson, A survey of Einstein Metrics on 4-Dimensional Manifolds,, Handbook of Geometric Analysis, (2010).   Google Scholar

[2]

T. Arias-Marco and O. Kowalski, Classification of 4-dimensional homogeneous weakly Einstein manifolds,, Czechoslovak Math. J., 65 (2015), 21.  doi: 10.1007/s10587-015-0159-4.  Google Scholar

[3]

A. Besse, Einstein Manifolds,, 1st ed., (1987).  doi: 10.1007/978-3-540-74311-8.  Google Scholar

[4]

S. Chen and K. Liang, Left-invariant pseudo-Einstein metrics on Lie groups,, J. Nonlinear Math. Phys., 19 (2012).  doi: 10.1142/S1402925112500155.  Google Scholar

[5]

Z. Chen, D. Hou and C. Bai, A left-symmetric algebraic approach to left invariant flat pseudo-metrics on Lie groups,, J. Geom. Phys., 62 (2012), 1600.  doi: 10.1016/j.geomphys.2012.03.003.  Google Scholar

[6]

P. Gadea, J. González-Dávila and J. Oubina, Cyclic metric Lie groups,, Monatsh. Math., 176 (2015), 219.  doi: 10.1007/s00605-014-0692-5.  Google Scholar

[7]

M. Guediri, Novikov algebras carrying an invariant Lorentzian symmetric bilinear form,, J. Geom. Phys., 82 (2014), 132.  doi: 10.1016/j.geomphys.2014.04.007.  Google Scholar

[8]

F. Hindeleh and G. Thompson, Killing's equations for invariant metrics on Lie groups,, Journal of Geometry and Mechanics, 3 (2011), 323.  doi: 10.3934/jgm.2011.3.323.  Google Scholar

[9]

H. Kodama, A. Takahara and H. Tamaru, The space of left-invariant metrics on a Lie group up to isometry and scaling,, Manuscripta Math., 135 (2011), 229.  doi: 10.1007/s00229-010-0419-4.  Google Scholar

[10]

J. Milnor, Curvatures of left invariant metrics on Lie groups,, Advances in Math., 21 (1976), 293.  doi: 10.1016/S0001-8708(76)80002-3.  Google Scholar

[11]

J. Patera, R. T. Sharp, P. Winternitz and H. Zassenhaus, Invariants of real low dimension Lie algebras,, J. Math. Phys., 17 (1976), 986.  doi: 10.1063/1.522992.  Google Scholar

[12]

H. Wang and S. Deng, Left invariant Einstein-Randers metrics on compact Lie groups,, Canad. Math. Bull., 55 (2012), 870.  doi: 10.4153/CMB-2011-145-6.  Google Scholar

show all references

References:
[1]

M. Anderson, A survey of Einstein Metrics on 4-Dimensional Manifolds,, Handbook of Geometric Analysis, (2010).   Google Scholar

[2]

T. Arias-Marco and O. Kowalski, Classification of 4-dimensional homogeneous weakly Einstein manifolds,, Czechoslovak Math. J., 65 (2015), 21.  doi: 10.1007/s10587-015-0159-4.  Google Scholar

[3]

A. Besse, Einstein Manifolds,, 1st ed., (1987).  doi: 10.1007/978-3-540-74311-8.  Google Scholar

[4]

S. Chen and K. Liang, Left-invariant pseudo-Einstein metrics on Lie groups,, J. Nonlinear Math. Phys., 19 (2012).  doi: 10.1142/S1402925112500155.  Google Scholar

[5]

Z. Chen, D. Hou and C. Bai, A left-symmetric algebraic approach to left invariant flat pseudo-metrics on Lie groups,, J. Geom. Phys., 62 (2012), 1600.  doi: 10.1016/j.geomphys.2012.03.003.  Google Scholar

[6]

P. Gadea, J. González-Dávila and J. Oubina, Cyclic metric Lie groups,, Monatsh. Math., 176 (2015), 219.  doi: 10.1007/s00605-014-0692-5.  Google Scholar

[7]

M. Guediri, Novikov algebras carrying an invariant Lorentzian symmetric bilinear form,, J. Geom. Phys., 82 (2014), 132.  doi: 10.1016/j.geomphys.2014.04.007.  Google Scholar

[8]

F. Hindeleh and G. Thompson, Killing's equations for invariant metrics on Lie groups,, Journal of Geometry and Mechanics, 3 (2011), 323.  doi: 10.3934/jgm.2011.3.323.  Google Scholar

[9]

H. Kodama, A. Takahara and H. Tamaru, The space of left-invariant metrics on a Lie group up to isometry and scaling,, Manuscripta Math., 135 (2011), 229.  doi: 10.1007/s00229-010-0419-4.  Google Scholar

[10]

J. Milnor, Curvatures of left invariant metrics on Lie groups,, Advances in Math., 21 (1976), 293.  doi: 10.1016/S0001-8708(76)80002-3.  Google Scholar

[11]

J. Patera, R. T. Sharp, P. Winternitz and H. Zassenhaus, Invariants of real low dimension Lie algebras,, J. Math. Phys., 17 (1976), 986.  doi: 10.1063/1.522992.  Google Scholar

[12]

H. Wang and S. Deng, Left invariant Einstein-Randers metrics on compact Lie groups,, Canad. Math. Bull., 55 (2012), 870.  doi: 10.4153/CMB-2011-145-6.  Google Scholar

[1]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[2]

Firas Hindeleh, Gerard Thompson. Killing's equations for invariant metrics on Lie groups. Journal of Geometric Mechanics, 2011, 3 (3) : 323-335. doi: 10.3934/jgm.2011.3.323

[3]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[4]

Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-15. doi: 10.3934/dcdss.2020066

[5]

Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017

[6]

Dennis I. Barrett, Rory Biggs, Claudiu C. Remsing, Olga Rossi. Invariant nonholonomic Riemannian structures on three-dimensional Lie groups. Journal of Geometric Mechanics, 2016, 8 (2) : 139-167. doi: 10.3934/jgm.2016001

[7]

Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014

[8]

Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 453-481. doi: 10.3934/cpaa.2014.13.453

[9]

Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977

[10]

Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495

[11]

Eduardo Martínez. Classical field theory on Lie algebroids: Multisymplectic formalism. Journal of Geometric Mechanics, 2018, 10 (1) : 93-138. doi: 10.3934/jgm.2018004

[12]

Giulia Cavagnari, Antonio Marigonda. Measure-theoretic Lie brackets for nonsmooth vector fields. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 845-864. doi: 10.3934/dcdss.2018052

[13]

Carsten Collon, Joachim Rudolph, Frank Woittennek. Invariant feedback design for control systems with lie symmetries - A kinematic car example. Conference Publications, 2011, 2011 (Special) : 312-321. doi: 10.3934/proc.2011.2011.312

[14]

Michele Zadra, Elizabeth L. Mansfield. Using Lie group integrators to solve two and higher dimensional variational problems with symmetry. Journal of Computational Dynamics, 2019, 6 (2) : 485-511. doi: 10.3934/jcd.2019025

[15]

Meera G. Mainkar, Cynthia E. Will. Examples of Anosov Lie algebras. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 39-52. doi: 10.3934/dcds.2007.18.39

[16]

André Caldas, Mauro Patrão. Entropy of endomorphisms of Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1351-1363. doi: 10.3934/dcds.2013.33.1351

[17]

Patrick Foulon, Vladimir S. Matveev. Zermelo deformation of finsler metrics by killing vector fields. Electronic Research Announcements, 2018, 25: 1-7. doi: 10.3934/era.2018.25.001

[18]

K. C. H. Mackenzie. Drinfel'd doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids. Electronic Research Announcements, 1998, 4: 74-87.

[19]

Juan Carlos Marrero, D. Martín de Diego, Diana Sosa. Variational constrained mechanics on Lie affgebroids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 105-128. doi: 10.3934/dcdss.2010.3.105

[20]

Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]