-
Previous Article
Lagrangian reduction of discrete mechanical systems by stages
- JGM Home
- This Issue
-
Next Article
Fredholm properties of the $L^{2}$ exponential map on the symplectomorphism group
Symplectic reduction at zero angular momentum
1. | Department of Applied Mathematics and Statistics, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, United States |
2. | Departamento de Matemática Aplicada, Av. Athos da Silveira Ramos 149, Centro de Tecnologia - Bloco C, CEP: 21941-909 - Rio de Janeiro, Brazil |
3. | Department of Mathematics and Computer Science, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, United States |
References:
[1] |
J. M. Arms, M. J. Gotay and G. Jennings, Geometric and algebraic reduction for singular momentum maps, Adv. Math., 79 (1990), 43-103.
doi: 10.1016/0001-8708(90)90058-U. |
[2] |
A. Beauville, Symplectic singularities, Invent. Math., 139 (2000), 541-549.
doi: 10.1007/s002229900043. |
[3] |
L. Bos and M. J. Gotay, Reduced canonical formalism for a particle with zero angular momentum, in XIIIth International Colloquium on Group Theoretical Methods in Physics (College Park, Md., 1984), World Sci. Publishing, Singapore, 1984, 83-91. |
[4] |
J.-F. Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math., 88 (1987), 65-68.
doi: 10.1007/BF01405091. |
[5] |
D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, 2nd edition, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997. |
[6] |
H. Derksen and G. Kemper, Computational Invariant Theory, Invariant Theory and Algebraic Transformation Groups, I, Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-04958-7. |
[7] |
C. Farsi, H.-C. Herbig and C. Seaton, On orbifold criteria for symplectic toric quotients, SIGMA Symmetry Integrability Geom. Methods Appl., 9 (2013), Paper 032, 33pp.
doi: 10.3842/SIGMA.2013.032. |
[8] |
H. Flenner, Rationale quasihomogene Singularitäten, Arch. Math. (Basel), 36 (1981), 35-44.
doi: 10.1007/BF01223666. |
[9] |
M. J. Gotay, Reduction of homogeneous Yang-Mills fields, J. Geom. Phys., 6 (1989), 349-365.
doi: 10.1016/0393-0440(89)90009-0. |
[10] |
D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, 2012. Available from: http://www.math.uiuc.edu/Macaulay2/. |
[11] |
H.-C. Herbig, D. Herden and C. Seaton, On compositions with $x^2/(1-x)$, Proc. Amer. Math. Soc., 143 (2015), 4583-4589.
doi: 10.1090/proc/12806. |
[12] |
H.-C. Herbig and G. W. Schwarz, The Koszul complex of a moment map, J. Symplectic Geom., 11 (2013), 497-508.
doi: 10.4310/JSG.2013.v11.n3.a9. |
[13] |
H.-C. Herbig, G. W. Schwarz and C. Seaton, When is a symplectic quotient an orbifold?, Adv. Math., 280 (2015), 208-224.
doi: 10.1016/j.aim.2015.04.016. |
[14] |
H.-C. Herbig and C. Seaton, An impossibility theorem for linear symplectic circle quotients, Rep. Math. Phys., 75 (2015), 303-331.
doi: 10.1016/S0034-4877(15)00019-1. |
[15] |
H.-C. Herbig and C. Seaton, The Hilbert series of a linear symplectic circle quotient, Exp. Math., 23 (2014), 46-65.
doi: 10.1080/10586458.2013.863745. |
[16] |
J. Huebschmann, Singularities and Poisson geometry of certain representation spaces, in Quantization of Singular Symplectic Quotients, Progr. Math., 198, Birkhäuser, Basel, 2001, 119-135. |
[17] |
J. Huebschmann, Kähler spaces, nilpotent orbits, and singular reduction, Mem. Amer. Math. Soc., 172 (2004), vi+96pp.
doi: 10.1090/memo/0814. |
[18] |
C. Huneke, Tight closure, parameter ideals, and geometry, in Six Lectures on Commutative Algebra, Mod. Birkhäuser Class., Birkhäuser Verlag, Basel, 2010, 187-239.
doi: 10.1007/978-3-0346-0329-4_3. |
[19] |
G. Kempf and L. Ness, The length of vectors in representation spaces, in Algebraic Geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), Lecture Notes in Math., 732, Springer, Berlin, 1979, 233-243. |
[20] |
F. Kirwan, Convexity properties of the moment mapping. III, Invent. Math., 77 (1984), 547-552.
doi: 10.1007/BF01388838. |
[21] |
E. Lerman, R. Montgomery and R. Sjamaar, Examples of singular reduction, in Symplectic Geometry, London Math. Soc. Lecture Note Ser., 192, Cambridge Univ. Press, Cambridge, 1993, 127-155. |
[22] |
K. McGerty and T. Nevins, Derived equivalence for quantum symplectic resolutions, Selecta Math. (N.S.), 20 (2014), 675-717.
doi: 10.1007/s00029-013-0142-6. |
[23] |
C. Procesi and G. Schwarz, Inequalities defining orbit spaces, Invent. Math., 81 (1985), 539-554.
doi: 10.1007/BF01388587. |
[24] |
G. W. Schwarz, Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 37-135. |
[25] |
G. W. Schwarz, The topology of algebraic quotients, in Topological Methods in Algebraic Transformation Groups (New Brunswick, NJ, 1988), Progr. Math., 80, Birkhäuser Boston, Boston, MA, 1989, 135-151. |
[26] |
G. W. Schwarz, Lifting differential operators from orbit spaces, Ann. Sci. École Norm. Sup. (4), 28 (1995), 253-305. |
[27] |
R. Sjamaar, Holomorphic slices, symplectic reduction and multiplicities of representations, Ann. of Math. (2), 141 (1995), 87-129.
doi: 10.2307/2118628. |
[28] |
R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction, Ann. of Math. (2), 134 (1991), 375-422.
doi: 10.2307/2944350. |
[29] |
R. P. Stanley, Hilbert functions of graded algebras, Advances in Math., 28 (1978), 57-83.
doi: 10.1016/0001-8708(78)90045-2. |
[30] |
R. Terpereau, Schémas de Hilbert Invariants et Théorie Classique Des Invariants, Thesis (Ph.D.)-Université de Grenoble, 2012. Available from: arXiv:1211.1472. |
[31] |
È. B. Vinberg and V. L. Popov, Invariant Theory, in Algebraic Geometry. IV, A translation of Algebraic Geometry, 4 (Russian), Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989 [MR1100483], Translation edited by A. N. Parshin and I. R. Shafarevich, Encyclopaedia of Mathematical Sciences, 55, Springer-Verlag, Berlin, 1994, 123-278.
doi: 10.1007/978-3-662-03073-8. |
[32] |
K. Watanabe, Certain invariant subrings are Gorenstein. I, Osaka J. Math., 11 (1974), 1-8. |
[33] |
K. Watanabe, Certain invariant subrings are Gorenstein. II, Osaka J. Math., 11 (1974), 379-388. |
[34] |
K. Watanabe, Rational singularities with $k^*$-action, in Commutative Algebra (Trento, 1981), Lecture Notes in Pure and Appl. Math., 84, Dekker, New York, 1983, 339-351. |
[35] |
H. Weyl, The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton, N.J., 1939. |
[36] |
Wolfram Research, Mathematica edition: Version 7.0, http://www.wolfram.com/mathematica/. |
show all references
References:
[1] |
J. M. Arms, M. J. Gotay and G. Jennings, Geometric and algebraic reduction for singular momentum maps, Adv. Math., 79 (1990), 43-103.
doi: 10.1016/0001-8708(90)90058-U. |
[2] |
A. Beauville, Symplectic singularities, Invent. Math., 139 (2000), 541-549.
doi: 10.1007/s002229900043. |
[3] |
L. Bos and M. J. Gotay, Reduced canonical formalism for a particle with zero angular momentum, in XIIIth International Colloquium on Group Theoretical Methods in Physics (College Park, Md., 1984), World Sci. Publishing, Singapore, 1984, 83-91. |
[4] |
J.-F. Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math., 88 (1987), 65-68.
doi: 10.1007/BF01405091. |
[5] |
D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, 2nd edition, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997. |
[6] |
H. Derksen and G. Kemper, Computational Invariant Theory, Invariant Theory and Algebraic Transformation Groups, I, Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-04958-7. |
[7] |
C. Farsi, H.-C. Herbig and C. Seaton, On orbifold criteria for symplectic toric quotients, SIGMA Symmetry Integrability Geom. Methods Appl., 9 (2013), Paper 032, 33pp.
doi: 10.3842/SIGMA.2013.032. |
[8] |
H. Flenner, Rationale quasihomogene Singularitäten, Arch. Math. (Basel), 36 (1981), 35-44.
doi: 10.1007/BF01223666. |
[9] |
M. J. Gotay, Reduction of homogeneous Yang-Mills fields, J. Geom. Phys., 6 (1989), 349-365.
doi: 10.1016/0393-0440(89)90009-0. |
[10] |
D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, 2012. Available from: http://www.math.uiuc.edu/Macaulay2/. |
[11] |
H.-C. Herbig, D. Herden and C. Seaton, On compositions with $x^2/(1-x)$, Proc. Amer. Math. Soc., 143 (2015), 4583-4589.
doi: 10.1090/proc/12806. |
[12] |
H.-C. Herbig and G. W. Schwarz, The Koszul complex of a moment map, J. Symplectic Geom., 11 (2013), 497-508.
doi: 10.4310/JSG.2013.v11.n3.a9. |
[13] |
H.-C. Herbig, G. W. Schwarz and C. Seaton, When is a symplectic quotient an orbifold?, Adv. Math., 280 (2015), 208-224.
doi: 10.1016/j.aim.2015.04.016. |
[14] |
H.-C. Herbig and C. Seaton, An impossibility theorem for linear symplectic circle quotients, Rep. Math. Phys., 75 (2015), 303-331.
doi: 10.1016/S0034-4877(15)00019-1. |
[15] |
H.-C. Herbig and C. Seaton, The Hilbert series of a linear symplectic circle quotient, Exp. Math., 23 (2014), 46-65.
doi: 10.1080/10586458.2013.863745. |
[16] |
J. Huebschmann, Singularities and Poisson geometry of certain representation spaces, in Quantization of Singular Symplectic Quotients, Progr. Math., 198, Birkhäuser, Basel, 2001, 119-135. |
[17] |
J. Huebschmann, Kähler spaces, nilpotent orbits, and singular reduction, Mem. Amer. Math. Soc., 172 (2004), vi+96pp.
doi: 10.1090/memo/0814. |
[18] |
C. Huneke, Tight closure, parameter ideals, and geometry, in Six Lectures on Commutative Algebra, Mod. Birkhäuser Class., Birkhäuser Verlag, Basel, 2010, 187-239.
doi: 10.1007/978-3-0346-0329-4_3. |
[19] |
G. Kempf and L. Ness, The length of vectors in representation spaces, in Algebraic Geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), Lecture Notes in Math., 732, Springer, Berlin, 1979, 233-243. |
[20] |
F. Kirwan, Convexity properties of the moment mapping. III, Invent. Math., 77 (1984), 547-552.
doi: 10.1007/BF01388838. |
[21] |
E. Lerman, R. Montgomery and R. Sjamaar, Examples of singular reduction, in Symplectic Geometry, London Math. Soc. Lecture Note Ser., 192, Cambridge Univ. Press, Cambridge, 1993, 127-155. |
[22] |
K. McGerty and T. Nevins, Derived equivalence for quantum symplectic resolutions, Selecta Math. (N.S.), 20 (2014), 675-717.
doi: 10.1007/s00029-013-0142-6. |
[23] |
C. Procesi and G. Schwarz, Inequalities defining orbit spaces, Invent. Math., 81 (1985), 539-554.
doi: 10.1007/BF01388587. |
[24] |
G. W. Schwarz, Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 37-135. |
[25] |
G. W. Schwarz, The topology of algebraic quotients, in Topological Methods in Algebraic Transformation Groups (New Brunswick, NJ, 1988), Progr. Math., 80, Birkhäuser Boston, Boston, MA, 1989, 135-151. |
[26] |
G. W. Schwarz, Lifting differential operators from orbit spaces, Ann. Sci. École Norm. Sup. (4), 28 (1995), 253-305. |
[27] |
R. Sjamaar, Holomorphic slices, symplectic reduction and multiplicities of representations, Ann. of Math. (2), 141 (1995), 87-129.
doi: 10.2307/2118628. |
[28] |
R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction, Ann. of Math. (2), 134 (1991), 375-422.
doi: 10.2307/2944350. |
[29] |
R. P. Stanley, Hilbert functions of graded algebras, Advances in Math., 28 (1978), 57-83.
doi: 10.1016/0001-8708(78)90045-2. |
[30] |
R. Terpereau, Schémas de Hilbert Invariants et Théorie Classique Des Invariants, Thesis (Ph.D.)-Université de Grenoble, 2012. Available from: arXiv:1211.1472. |
[31] |
È. B. Vinberg and V. L. Popov, Invariant Theory, in Algebraic Geometry. IV, A translation of Algebraic Geometry, 4 (Russian), Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989 [MR1100483], Translation edited by A. N. Parshin and I. R. Shafarevich, Encyclopaedia of Mathematical Sciences, 55, Springer-Verlag, Berlin, 1994, 123-278.
doi: 10.1007/978-3-662-03073-8. |
[32] |
K. Watanabe, Certain invariant subrings are Gorenstein. I, Osaka J. Math., 11 (1974), 1-8. |
[33] |
K. Watanabe, Certain invariant subrings are Gorenstein. II, Osaka J. Math., 11 (1974), 379-388. |
[34] |
K. Watanabe, Rational singularities with $k^*$-action, in Commutative Algebra (Trento, 1981), Lecture Notes in Pure and Appl. Math., 84, Dekker, New York, 1983, 339-351. |
[35] |
H. Weyl, The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton, N.J., 1939. |
[36] |
Wolfram Research, Mathematica edition: Version 7.0, http://www.wolfram.com/mathematica/. |
[1] |
Alain Chenciner. The angular momentum of a relative equilibrium. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1033-1047. doi: 10.3934/dcds.2013.33.1033 |
[2] |
Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006 |
[3] |
Claudio Meneses. Linear phase space deformations with angular momentum symmetry. Journal of Geometric Mechanics, 2019, 11 (1) : 45-58. doi: 10.3934/jgm.2019003 |
[4] |
Toshihiro Iwai, Dmitrií A. Sadovskií, Boris I. Zhilinskií. Angular momentum coupling, Dirac oscillators, and quantum band rearrangements in the presence of momentum reversal symmetries. Journal of Geometric Mechanics, 2020, 12 (3) : 455-505. doi: 10.3934/jgm.2020021 |
[5] |
José Godoy, Nolbert Morales, Manuel Zamora. Existence and multiplicity of periodic solutions to an indefinite singular equation with two singularities. The degenerate case. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4137-4156. doi: 10.3934/dcds.2019167 |
[6] |
Rongrong Jin, Guangcun Lu. Representation formula for symmetrical symplectic capacity and applications. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4705-4765. doi: 10.3934/dcds.2020199 |
[7] |
Miguel Rodríguez-Olmos. Continuous singularities in hamiltonian relative equilibria with abelian momentum isotropy. Journal of Geometric Mechanics, 2020, 12 (3) : 525-540. doi: 10.3934/jgm.2020019 |
[8] |
Andrew James Bruce, Janusz Grabowski. Symplectic $ {\mathbb Z}_2^n $-manifolds. Journal of Geometric Mechanics, 2021, 13 (3) : 285-311. doi: 10.3934/jgm.2021020 |
[9] |
Marie-Claude Arnaud. A nondifferentiable essential irrational invariant curve for a $C^1$ symplectic twist map. Journal of Modern Dynamics, 2011, 5 (3) : 583-591. doi: 10.3934/jmd.2011.5.583 |
[10] |
Alexei Kaltchenko, Nina Timofeeva. Entropy estimators with almost sure convergence and an O(n-1) variance. Advances in Mathematics of Communications, 2008, 2 (1) : 1-13. doi: 10.3934/amc.2008.2.1 |
[11] |
C. D. Ahlbrandt, A. C. Peterson. A general reduction of order theorem for discrete linear symplectic systems. Conference Publications, 1998, 1998 (Special) : 7-18. doi: 10.3934/proc.1998.1998.7 |
[12] |
L. Búa, T. Mestdag, M. Salgado. Symmetry reduction, integrability and reconstruction in $k$-symplectic field theory. Journal of Geometric Mechanics, 2015, 7 (4) : 395-429. doi: 10.3934/jgm.2015.7.395 |
[13] |
Aihua Fan, Shilei Fan, Lingmin Liao, Yuefei Wang. Minimality of p-adic rational maps with good reduction. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3161-3182. doi: 10.3934/dcds.2017135 |
[14] |
Robert J. Martin, Patrizio Neff. Minimal geodesics on GL(n) for left-invariant, right-O(n)-invariant Riemannian metrics. Journal of Geometric Mechanics, 2016, 8 (3) : 323-357. doi: 10.3934/jgm.2016010 |
[15] |
Luis Álvarez–cónsul, David Fernández. Noncommutative bi-symplectic $\mathbb{N}Q$-algebras of weight 1. Conference Publications, 2015, 2015 (special) : 19-28. doi: 10.3934/proc.2015.0019 |
[16] |
Leonardo Manuel Cabrer, Daniele Mundici. Classifying GL$(n,\mathbb{Z})$-orbits of points and rational subspaces. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4723-4738. doi: 10.3934/dcds.2016005 |
[17] |
Xin Du, M. Monir Uddin, A. Mostakim Fony, Md. Tanzim Hossain, Md. Nazmul Islam Shuzan. Iterative Rational Krylov Algorithms for model reduction of a class of constrained structural dynamic system with Engineering applications. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 481-493. doi: 10.3934/naco.2021016 |
[18] |
Sebastián Ferrer, Francisco Crespo. Alternative angle-based approach to the $\mathcal{KS}$-Map. An interpretation through symmetry and reduction. Journal of Geometric Mechanics, 2018, 10 (3) : 359-372. doi: 10.3934/jgm.2018013 |
[19] |
Xuefeng Shen, Khoa Tran, Melvin Leok. High-order symplectic Lie group methods on $ SO(n) $ using the polar decomposition. Journal of Computational Dynamics, 2022 doi: 10.3934/jcd.2022003 |
[20] |
Dongsheng Kang, Fen Yang. Semilinear elliptic systems involving multiple critical exponents and singularities in $\mathbb{R}^N$. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4247-4263. doi: 10.3934/dcds.2012.32.4247 |
2021 Impact Factor: 0.737
Tools
Metrics
Other articles
by authors
[Back to Top]