March  2016, 8(1): 35-70. doi: 10.3934/jgm.2016.8.35

Lagrangian reduction of discrete mechanical systems by stages

1. 

Instituto Balseiro, Universidad Nacional de Cuyo – C.N.E.A., Av. Bustillo 9500, San Carlos de Bariloche, R8402AGP

2. 

Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 50 y 115, La Plata, Buenos Aires, 1900

Received  February 2015 Revised  November 2015 Published  February 2016

In this work we introduce a category of discrete Lagrange--Poincaré systems $\mathfrak{L}\mathfrak{P}_d$ and study some of its properties. In particular, we show that the discrete mechanical systems and the discrete dynamical systems obtained by the Lagrangian reduction of symmetric discrete mechanical systems are objects in $\mathfrak{L}\mathfrak{P}_d$. We introduce a notion of symmetry group for objects of $\mathfrak{L}\mathfrak{P}_d$ as well as a reduction procedure that is closed in the category $\mathfrak{L}\mathfrak{P}_d$. Furthermore, under some conditions, we show that the reduction in two steps (first by a closed normal subgroup of the symmetry group and then by the residual symmetry group) is isomorphic in $\mathfrak{L}\mathfrak{P}_d$ to the reduction by the full symmetry group.
Citation: Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of discrete mechanical systems by stages. Journal of Geometric Mechanics, 2016, 8 (1) : 35-70. doi: 10.3934/jgm.2016.8.35
References:
[1]

V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,, Ann. Inst. Fourier (Grenoble), 16 (1966), 319.  doi: 10.5802/aif.233.  Google Scholar

[2]

M. Castrillón López and T. S. Ratiu, Reduction in principal bundles: Covariant Lagrange-Poincaré equations,, Comm. Math. Phys., 236 (2003), 223.  doi: 10.1007/s00220-003-0797-5.  Google Scholar

[3]

H. Cendra and V. A. Díaz, Lagrange-d'Alembert-Poincaré equations by several stages,, , (2014).   Google Scholar

[4]

H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and nonholonomic systems,, in Mathematics Unlimited-2001 and Beyond, (2001), 221.   Google Scholar

[5]

________, Lagrangian reduction by stages,, Mem. Amer. Math. Soc., 152 (2001).  doi: 10.1090/memo/0722.  Google Scholar

[6]

V. A. Díaz, Reducción por etapas de sistemas noholónomos,, Ph.D. thesis, (2008).   Google Scholar

[7]

J. Fernández, C. Tori and M. Zuccalli, Lagrangian reduction of nonholonomic discrete mechanical systems,, J. Geom. Mech., 2 (2010), 69.  doi: 10.3934/jgm.2010.2.69.  Google Scholar

[8]

J. Fernández and M. Zuccalli, A geometric approach to discrete connections on principal bundles,, J. Geom. Mech., 5 (2013), 433.  doi: 10.3934/jgm.2013.5.433.  Google Scholar

[9]

V. Guillemin and A. Pollack, Differential Topology,, Prentice-Hall Inc., (1974).   Google Scholar

[10]

D. Husemoller, Fibre Bundles,, Third ed., (1994).  doi: 10.1007/978-1-4757-2261-1.  Google Scholar

[11]

D. Iglesias, J. C. Marrero, D. Martín de Diego, E. Martínez and E. Padrón, Reduction of symplectic Lie algebroids by a Lie subalgebroid and a symmetry Lie group,, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007).  doi: 10.3842/SIGMA.2007.049.  Google Scholar

[12]

S. Jalnapurkar, M. Leok, J. E. Marsden and M. West, Discrete Routh reduction,, J. Phys. A, 39 (2006), 5521.  doi: 10.1088/0305-4470/39/19/S12.  Google Scholar

[13]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. I,, Wiley Classics Library, (1996).   Google Scholar

[14]

J. M. Lee, Introduction to Smooth Manifolds,, Graduate Texts in Mathematics, (2003).   Google Scholar

[15]

M. Leok, J. E. Marsden and A. Weinstein, A discrete theory of connections on principal bundles,, , (2005).   Google Scholar

[16]

J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids,, Nonlinearity, 19 (2006), 1313.  doi: 10.1088/0951-7715/19/6/006.  Google Scholar

[17]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numer., 10 (2001), 357.  doi: 10.1017/S096249290100006X.  Google Scholar

[18]

J. E. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry,, Rep. Mathematical Phys., 5 (1974), 121.  doi: 10.1016/0034-4877(74)90021-4.  Google Scholar

[19]

J. E. Marsden, G. Misiołek, J. P. Ortega, M. Perlmutter and Tudor S. Ratiu, Hamiltonian Reduction by Stages,, Lecture Notes in Mathematics, (1913).   Google Scholar

[20]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry,, Second ed., (1999).  doi: 10.1007/978-0-387-21792-5.  Google Scholar

[21]

R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems,, J. Nonlinear Sci., 16 (2006), 283.  doi: 10.1007/s00332-005-0698-1.  Google Scholar

[22]

K. Meyer, Symmetries and integrals in mechanics,, Dynamical systems (Proc. Sympos., (1971), 259.   Google Scholar

[23]

P. Michor, Topics in Differential Geometry,, Graduate Studies in Mathematics, (2008).  doi: 10.1090/gsm/093.  Google Scholar

[24]

E. Routh, Stability of a Given State of Motion,, Macmillan and Co., (1877).   Google Scholar

[25]

S. Smale, Topology and mechanics. I,, Invent. Math., 10 (1970), 305.   Google Scholar

[26]

________, Topology and mechanics. II. The planar $n$-body problem,, Invent. Math., 11 (1970), 45.   Google Scholar

show all references

References:
[1]

V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,, Ann. Inst. Fourier (Grenoble), 16 (1966), 319.  doi: 10.5802/aif.233.  Google Scholar

[2]

M. Castrillón López and T. S. Ratiu, Reduction in principal bundles: Covariant Lagrange-Poincaré equations,, Comm. Math. Phys., 236 (2003), 223.  doi: 10.1007/s00220-003-0797-5.  Google Scholar

[3]

H. Cendra and V. A. Díaz, Lagrange-d'Alembert-Poincaré equations by several stages,, , (2014).   Google Scholar

[4]

H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and nonholonomic systems,, in Mathematics Unlimited-2001 and Beyond, (2001), 221.   Google Scholar

[5]

________, Lagrangian reduction by stages,, Mem. Amer. Math. Soc., 152 (2001).  doi: 10.1090/memo/0722.  Google Scholar

[6]

V. A. Díaz, Reducción por etapas de sistemas noholónomos,, Ph.D. thesis, (2008).   Google Scholar

[7]

J. Fernández, C. Tori and M. Zuccalli, Lagrangian reduction of nonholonomic discrete mechanical systems,, J. Geom. Mech., 2 (2010), 69.  doi: 10.3934/jgm.2010.2.69.  Google Scholar

[8]

J. Fernández and M. Zuccalli, A geometric approach to discrete connections on principal bundles,, J. Geom. Mech., 5 (2013), 433.  doi: 10.3934/jgm.2013.5.433.  Google Scholar

[9]

V. Guillemin and A. Pollack, Differential Topology,, Prentice-Hall Inc., (1974).   Google Scholar

[10]

D. Husemoller, Fibre Bundles,, Third ed., (1994).  doi: 10.1007/978-1-4757-2261-1.  Google Scholar

[11]

D. Iglesias, J. C. Marrero, D. Martín de Diego, E. Martínez and E. Padrón, Reduction of symplectic Lie algebroids by a Lie subalgebroid and a symmetry Lie group,, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007).  doi: 10.3842/SIGMA.2007.049.  Google Scholar

[12]

S. Jalnapurkar, M. Leok, J. E. Marsden and M. West, Discrete Routh reduction,, J. Phys. A, 39 (2006), 5521.  doi: 10.1088/0305-4470/39/19/S12.  Google Scholar

[13]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. I,, Wiley Classics Library, (1996).   Google Scholar

[14]

J. M. Lee, Introduction to Smooth Manifolds,, Graduate Texts in Mathematics, (2003).   Google Scholar

[15]

M. Leok, J. E. Marsden and A. Weinstein, A discrete theory of connections on principal bundles,, , (2005).   Google Scholar

[16]

J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids,, Nonlinearity, 19 (2006), 1313.  doi: 10.1088/0951-7715/19/6/006.  Google Scholar

[17]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numer., 10 (2001), 357.  doi: 10.1017/S096249290100006X.  Google Scholar

[18]

J. E. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry,, Rep. Mathematical Phys., 5 (1974), 121.  doi: 10.1016/0034-4877(74)90021-4.  Google Scholar

[19]

J. E. Marsden, G. Misiołek, J. P. Ortega, M. Perlmutter and Tudor S. Ratiu, Hamiltonian Reduction by Stages,, Lecture Notes in Mathematics, (1913).   Google Scholar

[20]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry,, Second ed., (1999).  doi: 10.1007/978-0-387-21792-5.  Google Scholar

[21]

R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems,, J. Nonlinear Sci., 16 (2006), 283.  doi: 10.1007/s00332-005-0698-1.  Google Scholar

[22]

K. Meyer, Symmetries and integrals in mechanics,, Dynamical systems (Proc. Sympos., (1971), 259.   Google Scholar

[23]

P. Michor, Topics in Differential Geometry,, Graduate Studies in Mathematics, (2008).  doi: 10.1090/gsm/093.  Google Scholar

[24]

E. Routh, Stability of a Given State of Motion,, Macmillan and Co., (1877).   Google Scholar

[25]

S. Smale, Topology and mechanics. I,, Invent. Math., 10 (1970), 305.   Google Scholar

[26]

________, Topology and mechanics. II. The planar $n$-body problem,, Invent. Math., 11 (1970), 45.   Google Scholar

[1]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[2]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[3]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[4]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[5]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[6]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[7]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[8]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[9]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[10]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[11]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[12]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[13]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[14]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[15]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[16]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[17]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[18]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[19]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[20]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]