March  2016, 8(1): 71-97. doi: 10.3934/jgm.2016.8.71

Free Courant and derived Leibniz pseudoalgebras

1. 

University of Luxembourg, Mathematics Research Unit, 6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg City, Luxembourg, Luxembourg

2. 

University of Luxembourg, Campus Kirchberg, Mathematics Research Unit, 6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg City

Received  August 2014 Revised  September 2015 Published  February 2016

We introduce the category of generalized Courant pseudoalgebras and show that it admits a free object on any anchored module over `functions'. The free generalized Courant pseudoalgebra is built from two components: the generalized Courant pseudoalgebra associated to a symmetric Leibniz pseudoalgebra and the free symmetric Leibniz pseudoalgebra on an anchored module. Our construction is thus based on the new concept of symmetric Leibniz algebroid. We compare this subclass of Leibniz algebroids with the subclass made of Loday algebroids, which were introduced in [12] as geometric replacements of standard Leibniz algebroids. Eventually, we apply our algebro-categorical machinery to associate a differential graded Lie algebra to any symmetric Leibniz pseudoalgebra, such that the Leibniz bracket of the latter coincides with the derived bracket of the former.
Citation: Benoît Jubin, Norbert Poncin, Kyosuke Uchino. Free Courant and derived Leibniz pseudoalgebras. Journal of Geometric Mechanics, 2016, 8 (1) : 71-97. doi: 10.3934/jgm.2016.8.71
References:
[1]

M. Ammar and N. Poncin, Coalgebraic approach to the Loday infinity category, stem differential for $2n$-ary graded and homotopy algebras, Ann. Inst. Fourier, 60 (2010), 355-387. doi: 10.5802/aif.2525.

[2]

A. Alekseev and P. Xu, Derived brackets and Courant algebroids, unpublished manuscript.

[3]

H. Bursztyn, D. Iglesias and P. Ševera, Courant morphisms and moment maps, Math. Res. Lett., 16 (2009), 215-232. doi: 10.4310/MRL.2009.v16.n2.a2.

[4]

G. Bonavolontà and N. Poncin, On the category of Lie $n$-algebroids, J. Geo. Phys., 73 (2013), 70-90. doi: 10.1016/j.geomphys.2013.05.004.

[5]

G. Di Brino, D. Pištalo and N. Poncin, Model structure on differential graded commutative algebras over the ring of differential operators, preprint, arXiv:1505.07720.

[6]

T. J. Courant, Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), 631-661. doi: 10.1090/S0002-9947-1990-0998124-1.

[7]

T. Courant and A. Weinstein, Beyond Poisson structures, Hermann, Travaux en cours, 27 (1988), 39-49.

[8]

I. Y. Dorfman, Dirac structures of integrable evolution equations, Phys. Lett. A, 125 (1987), 240-246. doi: 10.1016/0375-9601(87)90201-5.

[9]

V. Dotsenko and N. Poncin, A tale of three homotopies, Appl. Cat. Structures, (2015), 1-29, arXiv:1208.4695v2. doi: 10.1007/s10485-015-9407-x.

[10]

V. Drinfeld, Quantum groups, in Proceedings of the International Congress of Mathematicians (Berkeley), Amer. Math. Soc., 1 (1987), 798-820.

[11]

V. Ginzburg and M. Kapranov, Koszul duality for operads, Duke Math. J., 76 (1994), 203-272. doi: 10.1215/S0012-7094-94-07608-4.

[12]

J. Grabowski, D. Khudaverdyan and N. Poncin, The supergeometry of Loday algebroids, J. Geo. Mech., 5 (2013), 185-213. doi: 10.3934/jgm.2013.5.185.

[13]

J. Grabowski and G. Marmo, Non-antisymmetric versions of Nambu-Poisson and Lie algebroid brackets, J. Phys. A: Math. Gen., 34 (2001), 3803-3809. doi: 10.1088/0305-4470/34/18/308.

[14]

J. Grabowski and G. Marmo, The graded Jacobi algebras and (co)homology, J. Phys. A: Math. Gen., 36 (2003), 161-181. doi: 10.1088/0305-4470/36/1/311.

[15]

J. Grabowski, Abstract Jacobi and Poisson structures. Quantization and star-products, J. Geo. Phys., 9 (1992), 45-73. doi: 10.1016/0393-0440(92)90025-V.

[16]

J. Grabowski, Quasi-derivations and QD-algebroids, Rep. Math. Phys., 52 (2003), 445-451. doi: 10.1016/S0034-4877(03)80041-1.

[17]

D. García-Beltrán and J. A. Vallejo, An approach to omni-Lie algebroids using quasi-derivations, J. Gen. Lie Theo. Appl., 5 (2011), Art. ID G100801, 10 pp.

[18]

Y. Hagiwara, Nambu-Dirac manifolds, J. Phys. A: Math. Gen., 35 (2002), 1263-1281. doi: 10.1088/0305-4470/35/5/310.

[19]

Y. Hagiwara and T. Mizutani, Leibniz algebras associated with foliations, Kodai Math. J., 25 (2002), 151-165. doi: 10.2996/kmj/1071674438.

[20]

R. Ibáñez, M. de León, J. C. Marrero and E. Padrón, Leibniz algebroid associated with a Nambu-Poisson structure, J. Phys. A: Math. Gen., 32 (1999), 8129-8144. doi: 10.1088/0305-4470/32/46/310.

[21]

M. Kapranov, Free Lie algebroids and the space of paths, Selecta Mathematica, 13 (2007), p277, arXiv:math/0702584. doi: 10.1007/s00029-007-0041-9.

[22]

D. Khudaverdian, A. Mandal and N. Poncin, Higher categorified algebras versus bounded homotopy algebras, Theo. Appl. Cat., 25 (2011), 251-275.

[23]

Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier, 46 (1996), 1243-1274. doi: 10.5802/aif.1547.

[24]

Y. Kosmann-Schwarzbach, Derived brackets, Lett. Math. Phys., 69 (2004), 61-87. doi: 10.1007/s11005-004-0608-8.

[25]

Y. Kosmann-Schwarzbach, Quasi, twisted, and all that $\ldots$ in Poisson geometry and Lie algebroid theory, in The Breadth of Symplectic and Poisson Geometry, Progr. Math., 232 (2005), 363-389. doi: 10.1007/0-8176-4419-9_12.

[26]

D. Khudaverdian, N. Poncin and J. Qiu, On the infinity category of homotopy Leibniz algebras, Theo. Appl. Cat., 29 (2014), 332-370.

[27]

A. Kotov and T. Strobl, Generalizing geometry - algebroids and sigma models, in Handbook of Pseudo-Riemannian Geometry and Supersymmetry, IRMA Lect. Math. Theo. Phys., {16}, 2010, 209-262. doi: 10.4171/079-1/7.

[28]

J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Ann. Inst. Fourier, 39 (1993), 269-293.

[29]

J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann., 296 (1993), 139-158. doi: 10.1007/BF01445099.

[30]

Z.-J. Liu, A. Weinstein and P. Xu, Manin triples for Lie bialgebroids, J. Diff. Geo., 45 (1997), 547-574.

[31]

K. Mikami and T. Mizutani, Algebroids associated with pre-Poisson structures, Noncommutative Geometry and Physics, (2005), 71-96. doi: 10.1142/9789812779649_0004.

[32]

D. Roytenberg, Courant Algebroids, Derived Brackets and Even Symplectic Supermanifolds, Ph.D thesis, Berkeley, 1999.

[33]

D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids, Contemp. Math., 315 (2002), 169-185.

[34]

D. Roytenberg, Courant-Dorfman algebras and their cohomology, Lett. Math. Phys., 90 (2009), 311-351. doi: 10.1007/s11005-009-0342-3.

[35]

M. Stiénon and P. Xu, Modular classes of Loday algebroids, C. R. Acad. Sci. Paris, Ser. I, 346 (2008), 193-198. doi: 10.1016/j.crma.2007.12.012.

[36]

K. Uchino, Remarks on the definition of a Courant algebroid, Lett. Math. Phys., 60 (2002), 171-175. doi: 10.1023/A:1016179410273.

[37]

T. Voronov, Higher derived brackets for arbitrary derivations, Trav. Math., XVI (2005), 163-186.

[38]

A. Wade, On some properties of Leibniz algebroids, in Infinite Dimensional Lie Groups in Geometry and Representation Theory, World Sci. Publ., River Edge, NJ, 2002, 65-78. doi: 10.1142/9789812777089_0005.

show all references

References:
[1]

M. Ammar and N. Poncin, Coalgebraic approach to the Loday infinity category, stem differential for $2n$-ary graded and homotopy algebras, Ann. Inst. Fourier, 60 (2010), 355-387. doi: 10.5802/aif.2525.

[2]

A. Alekseev and P. Xu, Derived brackets and Courant algebroids, unpublished manuscript.

[3]

H. Bursztyn, D. Iglesias and P. Ševera, Courant morphisms and moment maps, Math. Res. Lett., 16 (2009), 215-232. doi: 10.4310/MRL.2009.v16.n2.a2.

[4]

G. Bonavolontà and N. Poncin, On the category of Lie $n$-algebroids, J. Geo. Phys., 73 (2013), 70-90. doi: 10.1016/j.geomphys.2013.05.004.

[5]

G. Di Brino, D. Pištalo and N. Poncin, Model structure on differential graded commutative algebras over the ring of differential operators, preprint, arXiv:1505.07720.

[6]

T. J. Courant, Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), 631-661. doi: 10.1090/S0002-9947-1990-0998124-1.

[7]

T. Courant and A. Weinstein, Beyond Poisson structures, Hermann, Travaux en cours, 27 (1988), 39-49.

[8]

I. Y. Dorfman, Dirac structures of integrable evolution equations, Phys. Lett. A, 125 (1987), 240-246. doi: 10.1016/0375-9601(87)90201-5.

[9]

V. Dotsenko and N. Poncin, A tale of three homotopies, Appl. Cat. Structures, (2015), 1-29, arXiv:1208.4695v2. doi: 10.1007/s10485-015-9407-x.

[10]

V. Drinfeld, Quantum groups, in Proceedings of the International Congress of Mathematicians (Berkeley), Amer. Math. Soc., 1 (1987), 798-820.

[11]

V. Ginzburg and M. Kapranov, Koszul duality for operads, Duke Math. J., 76 (1994), 203-272. doi: 10.1215/S0012-7094-94-07608-4.

[12]

J. Grabowski, D. Khudaverdyan and N. Poncin, The supergeometry of Loday algebroids, J. Geo. Mech., 5 (2013), 185-213. doi: 10.3934/jgm.2013.5.185.

[13]

J. Grabowski and G. Marmo, Non-antisymmetric versions of Nambu-Poisson and Lie algebroid brackets, J. Phys. A: Math. Gen., 34 (2001), 3803-3809. doi: 10.1088/0305-4470/34/18/308.

[14]

J. Grabowski and G. Marmo, The graded Jacobi algebras and (co)homology, J. Phys. A: Math. Gen., 36 (2003), 161-181. doi: 10.1088/0305-4470/36/1/311.

[15]

J. Grabowski, Abstract Jacobi and Poisson structures. Quantization and star-products, J. Geo. Phys., 9 (1992), 45-73. doi: 10.1016/0393-0440(92)90025-V.

[16]

J. Grabowski, Quasi-derivations and QD-algebroids, Rep. Math. Phys., 52 (2003), 445-451. doi: 10.1016/S0034-4877(03)80041-1.

[17]

D. García-Beltrán and J. A. Vallejo, An approach to omni-Lie algebroids using quasi-derivations, J. Gen. Lie Theo. Appl., 5 (2011), Art. ID G100801, 10 pp.

[18]

Y. Hagiwara, Nambu-Dirac manifolds, J. Phys. A: Math. Gen., 35 (2002), 1263-1281. doi: 10.1088/0305-4470/35/5/310.

[19]

Y. Hagiwara and T. Mizutani, Leibniz algebras associated with foliations, Kodai Math. J., 25 (2002), 151-165. doi: 10.2996/kmj/1071674438.

[20]

R. Ibáñez, M. de León, J. C. Marrero and E. Padrón, Leibniz algebroid associated with a Nambu-Poisson structure, J. Phys. A: Math. Gen., 32 (1999), 8129-8144. doi: 10.1088/0305-4470/32/46/310.

[21]

M. Kapranov, Free Lie algebroids and the space of paths, Selecta Mathematica, 13 (2007), p277, arXiv:math/0702584. doi: 10.1007/s00029-007-0041-9.

[22]

D. Khudaverdian, A. Mandal and N. Poncin, Higher categorified algebras versus bounded homotopy algebras, Theo. Appl. Cat., 25 (2011), 251-275.

[23]

Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier, 46 (1996), 1243-1274. doi: 10.5802/aif.1547.

[24]

Y. Kosmann-Schwarzbach, Derived brackets, Lett. Math. Phys., 69 (2004), 61-87. doi: 10.1007/s11005-004-0608-8.

[25]

Y. Kosmann-Schwarzbach, Quasi, twisted, and all that $\ldots$ in Poisson geometry and Lie algebroid theory, in The Breadth of Symplectic and Poisson Geometry, Progr. Math., 232 (2005), 363-389. doi: 10.1007/0-8176-4419-9_12.

[26]

D. Khudaverdian, N. Poncin and J. Qiu, On the infinity category of homotopy Leibniz algebras, Theo. Appl. Cat., 29 (2014), 332-370.

[27]

A. Kotov and T. Strobl, Generalizing geometry - algebroids and sigma models, in Handbook of Pseudo-Riemannian Geometry and Supersymmetry, IRMA Lect. Math. Theo. Phys., {16}, 2010, 209-262. doi: 10.4171/079-1/7.

[28]

J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Ann. Inst. Fourier, 39 (1993), 269-293.

[29]

J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann., 296 (1993), 139-158. doi: 10.1007/BF01445099.

[30]

Z.-J. Liu, A. Weinstein and P. Xu, Manin triples for Lie bialgebroids, J. Diff. Geo., 45 (1997), 547-574.

[31]

K. Mikami and T. Mizutani, Algebroids associated with pre-Poisson structures, Noncommutative Geometry and Physics, (2005), 71-96. doi: 10.1142/9789812779649_0004.

[32]

D. Roytenberg, Courant Algebroids, Derived Brackets and Even Symplectic Supermanifolds, Ph.D thesis, Berkeley, 1999.

[33]

D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids, Contemp. Math., 315 (2002), 169-185.

[34]

D. Roytenberg, Courant-Dorfman algebras and their cohomology, Lett. Math. Phys., 90 (2009), 311-351. doi: 10.1007/s11005-009-0342-3.

[35]

M. Stiénon and P. Xu, Modular classes of Loday algebroids, C. R. Acad. Sci. Paris, Ser. I, 346 (2008), 193-198. doi: 10.1016/j.crma.2007.12.012.

[36]

K. Uchino, Remarks on the definition of a Courant algebroid, Lett. Math. Phys., 60 (2002), 171-175. doi: 10.1023/A:1016179410273.

[37]

T. Voronov, Higher derived brackets for arbitrary derivations, Trav. Math., XVI (2005), 163-186.

[38]

A. Wade, On some properties of Leibniz algebroids, in Infinite Dimensional Lie Groups in Geometry and Representation Theory, World Sci. Publ., River Edge, NJ, 2002, 65-78. doi: 10.1142/9789812777089_0005.

[1]

Juan Carlos Marrero, David Martín de Diego, Eduardo Martínez. Local convexity for second order differential equations on a Lie algebroid. Journal of Geometric Mechanics, 2021, 13 (3) : 477-499. doi: 10.3934/jgm.2021021

[2]

A. S. Dzhumadil'daev. Jordan elements and Left-Center of a Free Leibniz algebra. Electronic Research Announcements, 2011, 18: 31-49. doi: 10.3934/era.2011.18.31

[3]

Janusz Grabowski, David Khudaverdyan, Norbert Poncin. The supergeometry of Loday algebroids. Journal of Geometric Mechanics, 2013, 5 (2) : 185-213. doi: 10.3934/jgm.2013.5.185

[4]

Paulo Antunes, Joana M. Nunes da Costa. Hypersymplectic structures on Courant algebroids. Journal of Geometric Mechanics, 2015, 7 (3) : 255-280. doi: 10.3934/jgm.2015.7.255

[5]

David Li-Bland, Pavol Ševera. Integration of exact Courant algebroids. Electronic Research Announcements, 2012, 19: 58-76. doi: 10.3934/era.2012.19.58

[6]

Honglei Lang, Yunhe Sheng. Linearization of the higher analogue of Courant algebroids. Journal of Geometric Mechanics, 2020, 12 (4) : 585-606. doi: 10.3934/jgm.2020025

[7]

Sobhan Seyfaddini. Spectral killers and Poisson bracket invariants. Journal of Modern Dynamics, 2015, 9: 51-66. doi: 10.3934/jmd.2015.9.51

[8]

Vladimir Georgiev, Koichi Taniguchi. On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1101-1115. doi: 10.3934/dcds.2019046

[9]

Ünver Çiftçi. Leibniz-Dirac structures and nonconservative systems with constraints. Journal of Geometric Mechanics, 2013, 5 (2) : 167-183. doi: 10.3934/jgm.2013.5.167

[10]

Frol Zapolsky. Quasi-states and the Poisson bracket on surfaces. Journal of Modern Dynamics, 2007, 1 (3) : 465-475. doi: 10.3934/jmd.2007.1.465

[11]

Karina Samvelyan, Frol Zapolsky. Rigidity of the ${{L}^{p}}$-norm of the Poisson bracket on surfaces. Electronic Research Announcements, 2017, 24: 28-37. doi: 10.3934/era.2017.24.004

[12]

Michael Kiermaier, Reinhard Laue. Derived and residual subspace designs. Advances in Mathematics of Communications, 2015, 9 (1) : 105-115. doi: 10.3934/amc.2015.9.105

[13]

Neşet Deniz Turgay. On the mod p Steenrod algebra and the Leibniz-Hopf algebra. Electronic Research Archive, 2020, 28 (2) : 951-959. doi: 10.3934/era.2020050

[14]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[15]

Ermal Feleqi, Franco Rampazzo. Integral representations for bracket-generating multi-flows. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4345-4366. doi: 10.3934/dcds.2015.35.4345

[16]

Joep H.M. Evers, Sander C. Hille, Adrian Muntean. Modelling with measures: Approximation of a mass-emitting object by a point source. Mathematical Biosciences & Engineering, 2015, 12 (2) : 357-373. doi: 10.3934/mbe.2015.12.357

[17]

Francisco Crespo, Francisco Javier Molero, Sebastián Ferrer. Poisson and integrable systems through the Nambu bracket and its Jacobi multiplier. Journal of Geometric Mechanics, 2016, 8 (2) : 169-178. doi: 10.3934/jgm.2016002

[18]

Roman Chapko. On a Hybrid method for shape reconstruction of a buried object in an elastostatic half plane. Inverse Problems and Imaging, 2009, 3 (2) : 199-210. doi: 10.3934/ipi.2009.3.199

[19]

Nancy López Reyes, Luis E. Benítez Babilonia. A discrete hierarchy of double bracket equations and a class of negative power series. Mathematical Control and Related Fields, 2017, 7 (1) : 41-52. doi: 10.3934/mcrf.2017003

[20]

Filippo Morabito. Bounded and unbounded capillary surfaces derived from the catenoid. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 589-614. doi: 10.3934/dcds.2018026

2021 Impact Factor: 0.737

Metrics

  • PDF downloads (178)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]