March  2016, 8(1): 99-138. doi: 10.3934/jgm.2016.8.99

Linearisation of tautological control systems

1. 

Department of Mathematics and Statistics, Queen's University, Kingston, ON K7L 3N6, Canada

Received  May 2014 Revised  October 2015 Published  February 2016

The framework of tautological control systems is one where ``control'' in the usual sense has been eliminated, with the intention of overcoming the issue of feedback-invariance. Here, the linearisation of tautological control systems is described. This linearisation retains the feedback-invariant character of the tautological control systems framework and so permits, for example, a well-defined notion of linearisation of a system about an equilibrium point, something which has surprisingly been missing up to now. The linearisations described are of systems, first, and then about reference trajectories and reference flows.
Citation: Andrew D. Lewis. Linearisation of tautological control systems. Journal of Geometric Mechanics, 2016, 8 (1) : 99-138. doi: 10.3934/jgm.2016.8.99
References:
[1]

R. Abraham, J. E. Marsden and T. S. Ratiu, Manifolds, Tensor Analysis, and Applications,, 2nd edition, (1988).  doi: 10.1007/978-1-4612-1029-0.  Google Scholar

[2]

A. A. Agrachev and R. V. Gamkrelidze, The exponential representation of flows and the chronological calculus,, Math. USSR-Sb., 107 (1978), 467.   Google Scholar

[3]

A. A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint,, Encyclopedia of Mathematical Sciences, (2004).  doi: 10.1007/978-3-662-06404-7.  Google Scholar

[4]

C. O. Aguilar, Local Controllability of Affine Distributions,, PhD thesis, (2010).   Google Scholar

[5]

M. Barbero-Liñán and A. D. Lewis, Geometric interpretations of the symmetric product in affine differential geometry,, Int. J. Geom. Methods Mod. Phys., 9 (2012).  doi: 10.1142/S0219887812500739.  Google Scholar

[6]

R. Beckmann and A. Deitmar, Strong vector valued integrals, 2011,, , ().   Google Scholar

[7]

N. Bourbaki, Algebra I,, Elements of Mathematics, (1989).   Google Scholar

[8]

G. E. Bredon, Sheaf Theory,, 2nd edition, (1997).  doi: 10.1007/978-1-4612-0647-7.  Google Scholar

[9]

R. W. Brockett, Finite Dimensional Linear Systems,, John Wiley and Sons, (1970).   Google Scholar

[10]

D. L. Cohn, Measure Theory,, Birkhäuser, (1980).   Google Scholar

[11]

C. T. J. Dodson and T. Poston, Tensor Geometry,, Graduate Texts in Mathematics, (1991).  doi: 10.1007/978-3-642-10514-2.  Google Scholar

[12]

H. Federer, Geometric Measure Theory,, Reprint of 1969 edition, (1969).   Google Scholar

[13]

R. Godement, Topologie Algébrique et Théorie Des Faisceaux,, Publications de l'Institut de mathématique de l'Université de Strasbourg, (1958).   Google Scholar

[14]

M. W. Hirsch, Differential Topology,, Graduate Texts in Mathematics, (1976).   Google Scholar

[15]

A. Isidori, Nonlinear Control Systems,, 3rd edition, (1995).  doi: 10.1007/978-1-84628-615-5.  Google Scholar

[16]

S. Jafarpour and A. D. Lewis, Time-varying Vector Fields and Their Flows,, To appear in Springer Briefs in Mathematics, (2014).  doi: 10.1007/978-3-319-10139-2.  Google Scholar

[17]

S. Jafarpour and A. D. Lewis, Locally Convex Topologies and Control Theory,, Submitted to Mathematics of Control, (2015).   Google Scholar

[18]

H. Jarchow, Locally Convex Spaces,, Mathematical Textbooks, (1981).   Google Scholar

[19]

M. Kashiwara and P. Schapira, Sheaves on Manifolds,, Grundlehren der Mathematischen Wissenschaften, (1990).  doi: 10.1007/978-3-662-02661-8.  Google Scholar

[20]

H. K. Khalil, Nonlinear Systems,, 3rd edition, (2001).   Google Scholar

[21]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Volume I,, Interscience Tracts in Pure and Applied Mathematics, (1963).   Google Scholar

[22]

I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry,, Springer-Verlag, (1993).  doi: 10.1007/978-3-662-02950-3.  Google Scholar

[23]

A. D. Lewis, Fundamental problems of geometric control theory,, in Proceedings of the 51st IEEE Conference on Decision and Control, (2012), 7511.  doi: 10.1109/CDC.2012.6427046.  Google Scholar

[24]

A. D. Lewis, Tautological Control Systems,, Springer Briefs in Electrical and Computer Engineering-Control, (2014).  doi: 10.1007/978-3-319-08638-5.  Google Scholar

[25]

A. D. Lewis and D. R. Tyner, Geometric Jacobian linearization and LQR theory,, J. Geom. Mech., 2 (2010), 397.  doi: 10.3934/jgm.2010.2.397.  Google Scholar

[26]

K. C. H. Mackenzie, The General Theory of Lie Groupoids and Lie Algebroids,, London Mathematical Society Lecture Note Series, (2005).  doi: 10.1017/CBO9781107325883.  Google Scholar

[27]

H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control Systems,, Springer-Verlag, (1990).  doi: 10.1007/978-1-4757-2101-0.  Google Scholar

[28]

S. Ramanan, Global Calculus,, Graduate Studies in Mathematics, (2005).   Google Scholar

[29]

W. Rudin, Functional Analysis,, 2nd edition, (1991).   Google Scholar

[30]

S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds,, Tôhoku Math. J. (2), 10 (1958), 338.  doi: 10.2748/tmj/1178244668.  Google Scholar

[31]

S. Sastry, Nonlinear Systems: Analysis, Stability, and Control,, Interdisciplinary Applied Mathematics, (1999).  doi: 10.1007/978-1-4757-3108-8.  Google Scholar

[32]

D. J. Saunders, The Geometry of Jet Bundles,, London Mathematical Society Lecture Note Series, (1989).  doi: 10.1017/CBO9780511526411.  Google Scholar

[33]

H. H. Schaefer and M. P. Wolff, Topological Vector Spaces,, 2nd edition, (1999).  doi: 10.1007/978-1-4612-1468-7.  Google Scholar

[34]

F. Schuricht and H. von der Mosel, Ordinary Differential Equations with Measurable Right-Hand Side and Parameter Dependence,, Technical Report Preprint 676, (2000).   Google Scholar

[35]

E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems,, 2nd edition, (1998).  doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[36]

Stacks Project Authors, Stacks project,, , (2014).   Google Scholar

[37]

H. J. Sussmann, An introduction to the coordinate-free maximum principle,, in Geometry of Feedback and Optimal Control (eds. B. Jakubczyk and W. Respondek), (1997), 463.   Google Scholar

[38]

W. M. Wonham, Linear Multivariable Control, A Geometric Approach,, 3rd edition, (1985).  doi: 10.1007/978-1-4612-1082-5.  Google Scholar

[39]

K. Yano and S. Ishihara, Tangent and Cotangent Bundles,, Pure and Applied Mathematics, (1973).   Google Scholar

[40]

K. Yano and S. Kobayashi, Prolongations of tensor fields and connections to tangent bundles I. General theory,, J. Math. Soc. Japan, 18 (1966), 194.  doi: 10.2969/jmsj/01820194.  Google Scholar

show all references

References:
[1]

R. Abraham, J. E. Marsden and T. S. Ratiu, Manifolds, Tensor Analysis, and Applications,, 2nd edition, (1988).  doi: 10.1007/978-1-4612-1029-0.  Google Scholar

[2]

A. A. Agrachev and R. V. Gamkrelidze, The exponential representation of flows and the chronological calculus,, Math. USSR-Sb., 107 (1978), 467.   Google Scholar

[3]

A. A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint,, Encyclopedia of Mathematical Sciences, (2004).  doi: 10.1007/978-3-662-06404-7.  Google Scholar

[4]

C. O. Aguilar, Local Controllability of Affine Distributions,, PhD thesis, (2010).   Google Scholar

[5]

M. Barbero-Liñán and A. D. Lewis, Geometric interpretations of the symmetric product in affine differential geometry,, Int. J. Geom. Methods Mod. Phys., 9 (2012).  doi: 10.1142/S0219887812500739.  Google Scholar

[6]

R. Beckmann and A. Deitmar, Strong vector valued integrals, 2011,, , ().   Google Scholar

[7]

N. Bourbaki, Algebra I,, Elements of Mathematics, (1989).   Google Scholar

[8]

G. E. Bredon, Sheaf Theory,, 2nd edition, (1997).  doi: 10.1007/978-1-4612-0647-7.  Google Scholar

[9]

R. W. Brockett, Finite Dimensional Linear Systems,, John Wiley and Sons, (1970).   Google Scholar

[10]

D. L. Cohn, Measure Theory,, Birkhäuser, (1980).   Google Scholar

[11]

C. T. J. Dodson and T. Poston, Tensor Geometry,, Graduate Texts in Mathematics, (1991).  doi: 10.1007/978-3-642-10514-2.  Google Scholar

[12]

H. Federer, Geometric Measure Theory,, Reprint of 1969 edition, (1969).   Google Scholar

[13]

R. Godement, Topologie Algébrique et Théorie Des Faisceaux,, Publications de l'Institut de mathématique de l'Université de Strasbourg, (1958).   Google Scholar

[14]

M. W. Hirsch, Differential Topology,, Graduate Texts in Mathematics, (1976).   Google Scholar

[15]

A. Isidori, Nonlinear Control Systems,, 3rd edition, (1995).  doi: 10.1007/978-1-84628-615-5.  Google Scholar

[16]

S. Jafarpour and A. D. Lewis, Time-varying Vector Fields and Their Flows,, To appear in Springer Briefs in Mathematics, (2014).  doi: 10.1007/978-3-319-10139-2.  Google Scholar

[17]

S. Jafarpour and A. D. Lewis, Locally Convex Topologies and Control Theory,, Submitted to Mathematics of Control, (2015).   Google Scholar

[18]

H. Jarchow, Locally Convex Spaces,, Mathematical Textbooks, (1981).   Google Scholar

[19]

M. Kashiwara and P. Schapira, Sheaves on Manifolds,, Grundlehren der Mathematischen Wissenschaften, (1990).  doi: 10.1007/978-3-662-02661-8.  Google Scholar

[20]

H. K. Khalil, Nonlinear Systems,, 3rd edition, (2001).   Google Scholar

[21]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Volume I,, Interscience Tracts in Pure and Applied Mathematics, (1963).   Google Scholar

[22]

I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry,, Springer-Verlag, (1993).  doi: 10.1007/978-3-662-02950-3.  Google Scholar

[23]

A. D. Lewis, Fundamental problems of geometric control theory,, in Proceedings of the 51st IEEE Conference on Decision and Control, (2012), 7511.  doi: 10.1109/CDC.2012.6427046.  Google Scholar

[24]

A. D. Lewis, Tautological Control Systems,, Springer Briefs in Electrical and Computer Engineering-Control, (2014).  doi: 10.1007/978-3-319-08638-5.  Google Scholar

[25]

A. D. Lewis and D. R. Tyner, Geometric Jacobian linearization and LQR theory,, J. Geom. Mech., 2 (2010), 397.  doi: 10.3934/jgm.2010.2.397.  Google Scholar

[26]

K. C. H. Mackenzie, The General Theory of Lie Groupoids and Lie Algebroids,, London Mathematical Society Lecture Note Series, (2005).  doi: 10.1017/CBO9781107325883.  Google Scholar

[27]

H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control Systems,, Springer-Verlag, (1990).  doi: 10.1007/978-1-4757-2101-0.  Google Scholar

[28]

S. Ramanan, Global Calculus,, Graduate Studies in Mathematics, (2005).   Google Scholar

[29]

W. Rudin, Functional Analysis,, 2nd edition, (1991).   Google Scholar

[30]

S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds,, Tôhoku Math. J. (2), 10 (1958), 338.  doi: 10.2748/tmj/1178244668.  Google Scholar

[31]

S. Sastry, Nonlinear Systems: Analysis, Stability, and Control,, Interdisciplinary Applied Mathematics, (1999).  doi: 10.1007/978-1-4757-3108-8.  Google Scholar

[32]

D. J. Saunders, The Geometry of Jet Bundles,, London Mathematical Society Lecture Note Series, (1989).  doi: 10.1017/CBO9780511526411.  Google Scholar

[33]

H. H. Schaefer and M. P. Wolff, Topological Vector Spaces,, 2nd edition, (1999).  doi: 10.1007/978-1-4612-1468-7.  Google Scholar

[34]

F. Schuricht and H. von der Mosel, Ordinary Differential Equations with Measurable Right-Hand Side and Parameter Dependence,, Technical Report Preprint 676, (2000).   Google Scholar

[35]

E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems,, 2nd edition, (1998).  doi: 10.1007/978-1-4612-0577-7.  Google Scholar

[36]

Stacks Project Authors, Stacks project,, , (2014).   Google Scholar

[37]

H. J. Sussmann, An introduction to the coordinate-free maximum principle,, in Geometry of Feedback and Optimal Control (eds. B. Jakubczyk and W. Respondek), (1997), 463.   Google Scholar

[38]

W. M. Wonham, Linear Multivariable Control, A Geometric Approach,, 3rd edition, (1985).  doi: 10.1007/978-1-4612-1082-5.  Google Scholar

[39]

K. Yano and S. Ishihara, Tangent and Cotangent Bundles,, Pure and Applied Mathematics, (1973).   Google Scholar

[40]

K. Yano and S. Kobayashi, Prolongations of tensor fields and connections to tangent bundles I. General theory,, J. Math. Soc. Japan, 18 (1966), 194.  doi: 10.2969/jmsj/01820194.  Google Scholar

[1]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[2]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[3]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[4]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[5]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[6]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[7]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[8]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[9]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[10]

Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021001

[11]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

[12]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[13]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[14]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[15]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[16]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[17]

Linhao Xu, Marya Claire Zdechlik, Melissa C. Smith, Min B. Rayamajhi, Don L. DeAngelis, Bo Zhang. Simulation of post-hurricane impact on invasive species with biological control management. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4059-4071. doi: 10.3934/dcds.2020038

[18]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[19]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[20]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]