June  2016, 8(2): 139-167. doi: 10.3934/jgm.2016001

Invariant nonholonomic Riemannian structures on three-dimensional Lie groups

1. 

Department of Mathematics (Pure and Applied), Rhodes University, 6140 Grahamstown, South Africa, South Africa, South Africa

2. 

Department of Mathematics, Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic and Department of Mathematics, Ghent University, B-9000 Ghent, Belgium

Received  September 2015 Revised  March 2016 Published  June 2016

We consider Riemannian manifolds endowed with a nonholonomic distribution. These structures model mechanical systems with a (positive definite) quadratic Lagrangian and nonholonomic constraints linear in velocities. We classify the left-invariant nonholonomic Riemannian structures on three-dimensional simply connected Lie groups, and describe the equivalence classes in terms of some basic isometric invariants. The classification naturally splits into two cases. In the first case, it reduces to a classification of left-invariant sub-Riemannian structures. In the second case, we find a canonical frame with which to directly compare equivalence classes.
Citation: Dennis I. Barrett, Rory Biggs, Claudiu C. Remsing, Olga Rossi. Invariant nonholonomic Riemannian structures on three-dimensional Lie groups. Journal of Geometric Mechanics, 2016, 8 (2) : 139-167. doi: 10.3934/jgm.2016001
References:
[1]

A. Agrachev and D. Barilari, Sub-Riemannian structures on 3D Lie groups,, J. Dyn. Control Syst., 18 (2012), 21.  doi: 10.1007/s10883-012-9133-8.  Google Scholar

[2]

A. Bloch, Nonholonomic Mechanics and Control,, Springer, (2003).  doi: 10.1007/b97376.  Google Scholar

[3]

E. Cartan, On the geometric representation of nonholonomic mechanical systems (in French),, in Proceedings of the International Congress of Mathematicians, (1928), 253.   Google Scholar

[4]

M. Čech and J. Musilová, Symmetries and currents in nonholonomic mechanics,, Commun. Math., 22 (2014), 159.   Google Scholar

[5]

S. Chaplygin, On the theory of motion of nonholonomic systems. The theorem of the Reducing Multiplier (in Russian),, Math. Sbornik, XXVIII (1911), 303.   Google Scholar

[6]

J. Cortés Monforte, Geometric, Control and Numerical Aspects of Nonholonomic Systems,, Springer, (2002).  doi: 10.1007/b84020.  Google Scholar

[7]

R. Cushman, H. Duistermaat and J. Śniatycki, Geometry of Nonholonomically Constrained Systems,, World Scientific, (2010).   Google Scholar

[8]

V. Dragović and B. Gajić, The Wagner curvature tensor in nonholonomic mechanics,, Regul. Chaotic Dyn., 8 (2003), 105.  doi: 10.1070/RD2003v008n01ABEH000229.  Google Scholar

[9]

K. Ehlers, Geometric equivalence on nonholonomic three-manifolds,, in Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, (2003), 246.   Google Scholar

[10]

K. Ehlers, J. Koiller, R. Montgomery and P. Rios, Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization,, in The Breadth of Symplectic and Poisson Geometry, 232 (2005), 75.  doi: 10.1007/0-8176-4419-9_4.  Google Scholar

[11]

Y. Fedorov and L. García-Naranjo, The hydrodynamic Chaplygin sleigh,, J. Phys. A: Math. Theor., 43 (2010).  doi: 10.1088/1751-8113/43/43/434013.  Google Scholar

[12]

Y. Fedorov and B. Jovanović, Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and flows on homogeneous spaces,, J. Nonlinear Sci., 14 (2004), 341.  doi: 10.1007/s00332-004-0603-3.  Google Scholar

[13]

Y. Fedorov, A. Maciejewski and M. Przybylska, The Poisson equations in the nonholonomic Suslov problem: integrability, meromorphic and hypergeometric solutions,, Nonlinearity, 22 (2009), 2231.  doi: 10.1088/0951-7715/22/9/009.  Google Scholar

[14]

B. Jovanović, Geometry and integrability of Euler-Poincaré-Suslov equations,, Nonlinearity, 14 (2001), 1555.  doi: 10.1088/0951-7715/14/6/308.  Google Scholar

[15]

J. Koiller, P. Rodrigues and P. Pitanga, Non-holonomic connections following Élie Cartan,, An. Acad. Bras. Cienc., 73 (2001), 165.  doi: 10.1590/S0001-37652001000200003.  Google Scholar

[16]

V. Kozlov, Invariant measures of the Euler-Poincaré equations on Lie algebras (in Russian),, Funkt. Anal. Prilozh., 22 (1988), 69.  doi: 10.1007/BF01077727.  Google Scholar

[17]

A. Krasiński, C. Behr, E. Schücking, F. Estabrook, H. Wahlquist, G. Ellis, R. Jantzen and W. Kundt, The Bianchi classification in the Schücking-Behr approach,, Gen. Relativ. Gravit., 35 (2003), 475.  doi: 10.1023/A:1022382202778.  Google Scholar

[18]

O. Krupková, Geometric mechanics on nonholonomic submanifolds,, Commun. Math., 18 (2010), 51.   Google Scholar

[19]

B. Langerock, Nonholonomic mechanics and connections over a bundle map,, J. Phys. A: Math. Gen., 34 (2001).  doi: 10.1088/0305-4470/34/44/102.  Google Scholar

[20]

A. Lewis, Affine connections and distributions with applications to nonholonomic mechanics,, Rep. Math. Phys., 42 (1998), 135.  doi: 10.1016/S0034-4877(98)80008-6.  Google Scholar

[21]

A. Lewis, Simple mechanical control systems with constraints,, IEEE Trans. Automat. Control, 45 (2000), 1420.  doi: 10.1109/9.871752.  Google Scholar

[22]

M. MacCallum, On the classification of the real four-dimensional Lie algebras,, in On Einstein's Path: Essays in Honour of E. Schücking (ed. A. Harvey), (1999), 299.   Google Scholar

[23]

G. Mubarakzyanov, On solvable Lie algebras (in Russian),, Izv. Vysš. Učehn. Zaved. Matematika, 32 (1963), 114.   Google Scholar

[24]

J. Neimark and N. Fufaev, Dynamics of Nonholonomic Systems,, American Mathematical Society, (1972).   Google Scholar

[25]

X. Pennec and V. Arsigny, Exponential barycenters of the canonical Cartan connection and invariant means on Lie groups,, in Matrix Information Geometry (eds. F. Nielsen and R. Bhatia), (2013), 123.  doi: 10.1007/978-3-642-30232-9_7.  Google Scholar

[26]

M. Postnikov, Geometry VI: Riemannian Geometry,, Springer, (2001).   Google Scholar

[27]

O. Rossi and J. Musilová,, The relativistic mechanics in a nonholonomic setting: A unified approach to particles with non-zero mass and massless particles,, J. Phys. A: Math. Theor., 45 (2012).  doi: 10.1088/1751-8113/45/25/255202.  Google Scholar

[28]

W. Sarlet, A direct geometrical construction of the dynamics of non-holonomic Lagrangian systems,, Extracta Math., 11 (1996), 202.   Google Scholar

[29]

G. Suslov, Theoretical Mechanics (in Russian),, Gostekhizdat, (1946).   Google Scholar

[30]

M. Swaczyna, Several examples of nonholonomic mechanical systems,, Commun. Math., 19 (2011), 27.   Google Scholar

[31]

M. Swaczyna and P. Volný, Uniform projectile motion: Dynamics, symmetries and conservation laws,, Rep. Math. Phys., 73 (2014), 177.  doi: 10.1016/S0034-4877(14)60039-2.  Google Scholar

[32]

J. Tavares, About Cartan geometrization of non-holonomic mechanics,, J. Geom. Phys., 45 (2003), 1.  doi: 10.1016/S0393-0440(02)00118-3.  Google Scholar

[33]

A. Vershik, Classical and non-classical dynamics with constraints,, in Global Analysis. Studies and Applications I (eds. Y. Borisovich and Y. Gliklikh), 1108 (1984), 278.  doi: 10.1007/BFb0099563.  Google Scholar

[34]

A. Vershik and L. Faddeev, Differential geometry and Lagrangian mechanics with constraints,, Sov. Phys. Dokl., 17 (1972), 34.   Google Scholar

[35]

A. Vershik and V. Gershkovich, Nonholonomic problems and the theory of distributions,, Acta Appl. Math., 12 (1988), 181.  doi: 10.1007/BF00047498.  Google Scholar

[36]

A. Vershik and V. Gershkovich, Nonholonomic dynamical systems, geometry of distributions and variational problems,, in Dynamical Systems VII (eds. V. Arnol'd and S. Novikov), (1994), 1.   Google Scholar

[37]

A. Veselov and L. Veselova, Integrable nonholonomic systems on Lie groups,, Math. Notes, 44 (1988), 810.  doi: 10.1007/BF01158420.  Google Scholar

show all references

References:
[1]

A. Agrachev and D. Barilari, Sub-Riemannian structures on 3D Lie groups,, J. Dyn. Control Syst., 18 (2012), 21.  doi: 10.1007/s10883-012-9133-8.  Google Scholar

[2]

A. Bloch, Nonholonomic Mechanics and Control,, Springer, (2003).  doi: 10.1007/b97376.  Google Scholar

[3]

E. Cartan, On the geometric representation of nonholonomic mechanical systems (in French),, in Proceedings of the International Congress of Mathematicians, (1928), 253.   Google Scholar

[4]

M. Čech and J. Musilová, Symmetries and currents in nonholonomic mechanics,, Commun. Math., 22 (2014), 159.   Google Scholar

[5]

S. Chaplygin, On the theory of motion of nonholonomic systems. The theorem of the Reducing Multiplier (in Russian),, Math. Sbornik, XXVIII (1911), 303.   Google Scholar

[6]

J. Cortés Monforte, Geometric, Control and Numerical Aspects of Nonholonomic Systems,, Springer, (2002).  doi: 10.1007/b84020.  Google Scholar

[7]

R. Cushman, H. Duistermaat and J. Śniatycki, Geometry of Nonholonomically Constrained Systems,, World Scientific, (2010).   Google Scholar

[8]

V. Dragović and B. Gajić, The Wagner curvature tensor in nonholonomic mechanics,, Regul. Chaotic Dyn., 8 (2003), 105.  doi: 10.1070/RD2003v008n01ABEH000229.  Google Scholar

[9]

K. Ehlers, Geometric equivalence on nonholonomic three-manifolds,, in Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, (2003), 246.   Google Scholar

[10]

K. Ehlers, J. Koiller, R. Montgomery and P. Rios, Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization,, in The Breadth of Symplectic and Poisson Geometry, 232 (2005), 75.  doi: 10.1007/0-8176-4419-9_4.  Google Scholar

[11]

Y. Fedorov and L. García-Naranjo, The hydrodynamic Chaplygin sleigh,, J. Phys. A: Math. Theor., 43 (2010).  doi: 10.1088/1751-8113/43/43/434013.  Google Scholar

[12]

Y. Fedorov and B. Jovanović, Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and flows on homogeneous spaces,, J. Nonlinear Sci., 14 (2004), 341.  doi: 10.1007/s00332-004-0603-3.  Google Scholar

[13]

Y. Fedorov, A. Maciejewski and M. Przybylska, The Poisson equations in the nonholonomic Suslov problem: integrability, meromorphic and hypergeometric solutions,, Nonlinearity, 22 (2009), 2231.  doi: 10.1088/0951-7715/22/9/009.  Google Scholar

[14]

B. Jovanović, Geometry and integrability of Euler-Poincaré-Suslov equations,, Nonlinearity, 14 (2001), 1555.  doi: 10.1088/0951-7715/14/6/308.  Google Scholar

[15]

J. Koiller, P. Rodrigues and P. Pitanga, Non-holonomic connections following Élie Cartan,, An. Acad. Bras. Cienc., 73 (2001), 165.  doi: 10.1590/S0001-37652001000200003.  Google Scholar

[16]

V. Kozlov, Invariant measures of the Euler-Poincaré equations on Lie algebras (in Russian),, Funkt. Anal. Prilozh., 22 (1988), 69.  doi: 10.1007/BF01077727.  Google Scholar

[17]

A. Krasiński, C. Behr, E. Schücking, F. Estabrook, H. Wahlquist, G. Ellis, R. Jantzen and W. Kundt, The Bianchi classification in the Schücking-Behr approach,, Gen. Relativ. Gravit., 35 (2003), 475.  doi: 10.1023/A:1022382202778.  Google Scholar

[18]

O. Krupková, Geometric mechanics on nonholonomic submanifolds,, Commun. Math., 18 (2010), 51.   Google Scholar

[19]

B. Langerock, Nonholonomic mechanics and connections over a bundle map,, J. Phys. A: Math. Gen., 34 (2001).  doi: 10.1088/0305-4470/34/44/102.  Google Scholar

[20]

A. Lewis, Affine connections and distributions with applications to nonholonomic mechanics,, Rep. Math. Phys., 42 (1998), 135.  doi: 10.1016/S0034-4877(98)80008-6.  Google Scholar

[21]

A. Lewis, Simple mechanical control systems with constraints,, IEEE Trans. Automat. Control, 45 (2000), 1420.  doi: 10.1109/9.871752.  Google Scholar

[22]

M. MacCallum, On the classification of the real four-dimensional Lie algebras,, in On Einstein's Path: Essays in Honour of E. Schücking (ed. A. Harvey), (1999), 299.   Google Scholar

[23]

G. Mubarakzyanov, On solvable Lie algebras (in Russian),, Izv. Vysš. Učehn. Zaved. Matematika, 32 (1963), 114.   Google Scholar

[24]

J. Neimark and N. Fufaev, Dynamics of Nonholonomic Systems,, American Mathematical Society, (1972).   Google Scholar

[25]

X. Pennec and V. Arsigny, Exponential barycenters of the canonical Cartan connection and invariant means on Lie groups,, in Matrix Information Geometry (eds. F. Nielsen and R. Bhatia), (2013), 123.  doi: 10.1007/978-3-642-30232-9_7.  Google Scholar

[26]

M. Postnikov, Geometry VI: Riemannian Geometry,, Springer, (2001).   Google Scholar

[27]

O. Rossi and J. Musilová,, The relativistic mechanics in a nonholonomic setting: A unified approach to particles with non-zero mass and massless particles,, J. Phys. A: Math. Theor., 45 (2012).  doi: 10.1088/1751-8113/45/25/255202.  Google Scholar

[28]

W. Sarlet, A direct geometrical construction of the dynamics of non-holonomic Lagrangian systems,, Extracta Math., 11 (1996), 202.   Google Scholar

[29]

G. Suslov, Theoretical Mechanics (in Russian),, Gostekhizdat, (1946).   Google Scholar

[30]

M. Swaczyna, Several examples of nonholonomic mechanical systems,, Commun. Math., 19 (2011), 27.   Google Scholar

[31]

M. Swaczyna and P. Volný, Uniform projectile motion: Dynamics, symmetries and conservation laws,, Rep. Math. Phys., 73 (2014), 177.  doi: 10.1016/S0034-4877(14)60039-2.  Google Scholar

[32]

J. Tavares, About Cartan geometrization of non-holonomic mechanics,, J. Geom. Phys., 45 (2003), 1.  doi: 10.1016/S0393-0440(02)00118-3.  Google Scholar

[33]

A. Vershik, Classical and non-classical dynamics with constraints,, in Global Analysis. Studies and Applications I (eds. Y. Borisovich and Y. Gliklikh), 1108 (1984), 278.  doi: 10.1007/BFb0099563.  Google Scholar

[34]

A. Vershik and L. Faddeev, Differential geometry and Lagrangian mechanics with constraints,, Sov. Phys. Dokl., 17 (1972), 34.   Google Scholar

[35]

A. Vershik and V. Gershkovich, Nonholonomic problems and the theory of distributions,, Acta Appl. Math., 12 (1988), 181.  doi: 10.1007/BF00047498.  Google Scholar

[36]

A. Vershik and V. Gershkovich, Nonholonomic dynamical systems, geometry of distributions and variational problems,, in Dynamical Systems VII (eds. V. Arnol'd and S. Novikov), (1994), 1.   Google Scholar

[37]

A. Veselov and L. Veselova, Integrable nonholonomic systems on Lie groups,, Math. Notes, 44 (1988), 810.  doi: 10.1007/BF01158420.  Google Scholar

[1]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[2]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[3]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[4]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[5]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[6]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[7]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[8]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[9]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[10]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[11]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[12]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[13]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[14]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[15]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[16]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[17]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[18]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[19]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[20]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (3)

[Back to Top]