June  2016, 8(2): 169-178. doi: 10.3934/jgm.2016002

Poisson and integrable systems through the Nambu bracket and its Jacobi multiplier

1. 

Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 5-C. Concepción, Chile

2. 

Departamento de Matemática Aplicada, Universidad de Murcia, 30071 Espinardo, Spain

Received  August 2015 Revised  January 2016 Published  June 2016

Poisson and integrable systems are orbitally equivalent through the Nambu bracket. Namely, we show that every completely integrable system of differential equations may be expressed into the Poisson-Hamiltonian formalism by means of the Nambu-Hamilton equations of motion and a reparametrisation related by the Jacobian multiplier. The equations of motion provide a natural way for finding the Jacobian multiplier. As a consequence, we partially give an alternative proof of a recent theorem in [13]. We complete this work presenting some features associated to Hamiltonian maximally superintegrable systems.
Citation: Francisco Crespo, Francisco Javier Molero, Sebastián Ferrer. Poisson and integrable systems through the Nambu bracket and its Jacobi multiplier. Journal of Geometric Mechanics, 2016, 8 (2) : 169-178. doi: 10.3934/jgm.2016002
References:
[1]

F. Bayen and M. Flato, Remarks concerning Nambu's generalized mechanics,, Phys. Rev. D, 11 (1975), 3049.  doi: 10.1103/PhysRevD.11.3049.  Google Scholar

[2]

R. Chatterjee, Dynamical symmetries and Nambu mechanics,, Letters in Mathematical Physics, 36 (1996), 117.  doi: 10.1007/BF00714375.  Google Scholar

[3]

R. Chatterjee and L. Takhtajan, Aspects of classical and quantum Nambu mechanics,, Letters in Mathematical Physics, 37 (1996), 475.  doi: 10.1007/BF00312678.  Google Scholar

[4]

S. Codriansky, R. Navarro and M. Pedroza, The Liouville condition and Nambu mechanics,, Journal of Physics A: Mathematical and General, 29 (1996), 1037.  doi: 10.1088/0305-4470/29/5/017.  Google Scholar

[5]

I. Cohen and A. Kálnay, On Nambu's generalized Hamiltonian mechanics,, International Journal of Theoretical Physics, 12 (1975), 61.  doi: 10.1007/BF01884111.  Google Scholar

[6]

F. Crespo and S. Ferrer, On the extended Euler system and the Jacobi and Weierstrass elliptic functions,, Journal of Geometric Mechanics, 7 (2015), 151.   Google Scholar

[7]

F. Crespo and S. Ferrer, On the Nambu-Poisson systems and its integrability,, In preparation, (2015).   Google Scholar

[8]

S. Ferrer, F. Crespo and F. J. Molero, On the N-Extended Euler system I. Generalized Jacobi elliptic functions,, Nonlinear Dynamics, 84 (2016), 413.   Google Scholar

[9]

Gautheron, P., Some remarks concerning Nambu mechanics,, Letters in Mathematical Physics, 37 (1996), 103.  doi: 10.1007/BF00400143.  Google Scholar

[10]

A. Horikoshi and Y. Kawamura, Hidden Nambu mechanics: A variant formulation of hamiltonian systems,, Progress of Theoretical and Experimental Physics, (2013).   Google Scholar

[11]

R. Ibáñez, M. de León, J. Marrero and D. Martín de Diego, Dynamics of generalized Poisson and NambuPoisson brackets,, Journal of Mathematical Physics, 38 (1997), 2332.  doi: 10.1063/1.531960.  Google Scholar

[12]

R. Ibáñez, M. de León, J. Marrero and D. Martín de Diego, Reduction of generalized Poisson and Nambu-Poisson manifolds,, Reports on Mathematical Physics, 42 (1998), 71.  doi: 10.1016/S0034-4877(98)80005-0.  Google Scholar

[13]

J. Llibre, C. Valls and X. Zhang, The completely integrable differential systems are essentially linear differential systems,, Journal of Nonlinear Science, 25 (2015), 815.  doi: 10.1007/s00332-015-9243-z.  Google Scholar

[14]

N. Makhaldiani, Nambu-Poisson dynamics with some applications,, Physics of Particles and Nuclei, 43 (2012), 703.   Google Scholar

[15]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry,, Springer-Verlag New York, (1999).   Google Scholar

[16]

K. Modin, Time transformation and reversibility of Nambu-Poisson systems,, J. Gen. Lie Theory Appl., 3 (2009), 39.  doi: 10.4303/jglta/S080103.  Google Scholar

[17]

P. Morando, Liouville condition, Nambu mechanics, and differential forms,, Journal of Physics A: Mathematical and General, 29 (1996).  doi: 10.1088/0305-4470/29/13/004.  Google Scholar

[18]

N. Mukunda and E. C. G. Sudarshan, Relation between Nambu and Hamiltonian mechanics,, Phys. Rev. D, 13 (1976), 2846.  doi: 10.1103/PhysRevD.13.2846.  Google Scholar

[19]

Y. Nambu, Generalized Hamiltonian mechanics,, Phys. Rev., 7 (1973), 2405.  doi: 10.1103/PhysRevD.7.2405.  Google Scholar

[20]

S. Pandit and A. Gangal, On generalized Nambu mechanics,, Journal of Physics A: Mathematical and General, 31 (1998), 2899.  doi: 10.1088/0305-4470/31/12/014.  Google Scholar

[21]

O. Rössler, An equation for continuous chaos,, Phys. Lett. A, 57 (1987), 397.   Google Scholar

[22]

L. Takhtajan, On foundation of the generalized Nambu mechanics,, Communications in Mathematical Physics, 160 (1994), 295.  doi: 10.1007/BF02103278.  Google Scholar

[23]

R. Tudoran and A. Gîrban, On the completely integrable case of the Rössler system,, Journal of Mathematical Physics, (2012).   Google Scholar

[24]

I. Vaisman, A survey on Nambu-Poisson brackets,, Acta Mathematica Universitatis Comenianae. New Series, 68 (1999), 213.   Google Scholar

show all references

References:
[1]

F. Bayen and M. Flato, Remarks concerning Nambu's generalized mechanics,, Phys. Rev. D, 11 (1975), 3049.  doi: 10.1103/PhysRevD.11.3049.  Google Scholar

[2]

R. Chatterjee, Dynamical symmetries and Nambu mechanics,, Letters in Mathematical Physics, 36 (1996), 117.  doi: 10.1007/BF00714375.  Google Scholar

[3]

R. Chatterjee and L. Takhtajan, Aspects of classical and quantum Nambu mechanics,, Letters in Mathematical Physics, 37 (1996), 475.  doi: 10.1007/BF00312678.  Google Scholar

[4]

S. Codriansky, R. Navarro and M. Pedroza, The Liouville condition and Nambu mechanics,, Journal of Physics A: Mathematical and General, 29 (1996), 1037.  doi: 10.1088/0305-4470/29/5/017.  Google Scholar

[5]

I. Cohen and A. Kálnay, On Nambu's generalized Hamiltonian mechanics,, International Journal of Theoretical Physics, 12 (1975), 61.  doi: 10.1007/BF01884111.  Google Scholar

[6]

F. Crespo and S. Ferrer, On the extended Euler system and the Jacobi and Weierstrass elliptic functions,, Journal of Geometric Mechanics, 7 (2015), 151.   Google Scholar

[7]

F. Crespo and S. Ferrer, On the Nambu-Poisson systems and its integrability,, In preparation, (2015).   Google Scholar

[8]

S. Ferrer, F. Crespo and F. J. Molero, On the N-Extended Euler system I. Generalized Jacobi elliptic functions,, Nonlinear Dynamics, 84 (2016), 413.   Google Scholar

[9]

Gautheron, P., Some remarks concerning Nambu mechanics,, Letters in Mathematical Physics, 37 (1996), 103.  doi: 10.1007/BF00400143.  Google Scholar

[10]

A. Horikoshi and Y. Kawamura, Hidden Nambu mechanics: A variant formulation of hamiltonian systems,, Progress of Theoretical and Experimental Physics, (2013).   Google Scholar

[11]

R. Ibáñez, M. de León, J. Marrero and D. Martín de Diego, Dynamics of generalized Poisson and NambuPoisson brackets,, Journal of Mathematical Physics, 38 (1997), 2332.  doi: 10.1063/1.531960.  Google Scholar

[12]

R. Ibáñez, M. de León, J. Marrero and D. Martín de Diego, Reduction of generalized Poisson and Nambu-Poisson manifolds,, Reports on Mathematical Physics, 42 (1998), 71.  doi: 10.1016/S0034-4877(98)80005-0.  Google Scholar

[13]

J. Llibre, C. Valls and X. Zhang, The completely integrable differential systems are essentially linear differential systems,, Journal of Nonlinear Science, 25 (2015), 815.  doi: 10.1007/s00332-015-9243-z.  Google Scholar

[14]

N. Makhaldiani, Nambu-Poisson dynamics with some applications,, Physics of Particles and Nuclei, 43 (2012), 703.   Google Scholar

[15]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry,, Springer-Verlag New York, (1999).   Google Scholar

[16]

K. Modin, Time transformation and reversibility of Nambu-Poisson systems,, J. Gen. Lie Theory Appl., 3 (2009), 39.  doi: 10.4303/jglta/S080103.  Google Scholar

[17]

P. Morando, Liouville condition, Nambu mechanics, and differential forms,, Journal of Physics A: Mathematical and General, 29 (1996).  doi: 10.1088/0305-4470/29/13/004.  Google Scholar

[18]

N. Mukunda and E. C. G. Sudarshan, Relation between Nambu and Hamiltonian mechanics,, Phys. Rev. D, 13 (1976), 2846.  doi: 10.1103/PhysRevD.13.2846.  Google Scholar

[19]

Y. Nambu, Generalized Hamiltonian mechanics,, Phys. Rev., 7 (1973), 2405.  doi: 10.1103/PhysRevD.7.2405.  Google Scholar

[20]

S. Pandit and A. Gangal, On generalized Nambu mechanics,, Journal of Physics A: Mathematical and General, 31 (1998), 2899.  doi: 10.1088/0305-4470/31/12/014.  Google Scholar

[21]

O. Rössler, An equation for continuous chaos,, Phys. Lett. A, 57 (1987), 397.   Google Scholar

[22]

L. Takhtajan, On foundation of the generalized Nambu mechanics,, Communications in Mathematical Physics, 160 (1994), 295.  doi: 10.1007/BF02103278.  Google Scholar

[23]

R. Tudoran and A. Gîrban, On the completely integrable case of the Rössler system,, Journal of Mathematical Physics, (2012).   Google Scholar

[24]

I. Vaisman, A survey on Nambu-Poisson brackets,, Acta Mathematica Universitatis Comenianae. New Series, 68 (1999), 213.   Google Scholar

[1]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[2]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[3]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[4]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[5]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[6]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[7]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[8]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[9]

Sze-Bi Hsu, Yu Jin. The dynamics of a two host-two virus system in a chemostat environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 415-441. doi: 10.3934/dcdsb.2020298

[10]

Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282

[11]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[12]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[13]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003

[14]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[15]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021004

[16]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[17]

Aisling McGlinchey, Oliver Mason. Observations on the bias of nonnegative mechanisms for differential privacy. Foundations of Data Science, 2020, 2 (4) : 429-442. doi: 10.3934/fods.2020020

[18]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[19]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[20]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (2)

[Back to Top]