-
Previous Article
Morse theory for elastica
- JGM Home
- This Issue
-
Next Article
Infinitesimally natural principal bundles
A weak approach to the stochastic deformation of classical mechanics
1. | Université Paris-Dauphine, Place du Maréchal De Lattre De Tassigny, 75775 Paris Cedex 16, France |
2. | GFM, Group of Mathematical Physics University of Lisbon, Department of Mathematics Faculty of Sciences, Campo Grande, Edifcio C6 PT-1749-016 Lisboa, Portugal |
References:
[1] |
R. Abraham and J. E. Masden, Foundations of mechanics, Am. J. Phys., 36 (1968), p280.
doi: 10.1119/1.1974504. |
[2] |
V. I. Arnold, Mathematical methods of classical mechanics, second edition graduate texts in mathematics, 60, Springer-verlag, 1989.
doi: 10.1007/978-1-4757-2063-1. |
[3] |
J.-M. Bismut, Mécanique Aléatoire, Lecture notes in mathematics, 866, Springer, 1981. |
[4] |
J. Cresson and S. Darses, Plongement stochastique des systèmes Lagrangiens, Compte rendu Mathématique, 342 (2006), 333-346.
doi: 10.1016/j.crma.2005.12.028. |
[5] |
A. B. Cruzeiro and R. Lassalle, On the least action principle for the Navier-Stokes equation, Springer Proceedings in Mathematics and Statistics, 100 (2014), 163-184.
doi: 10.1007/978-3-319-11292-3_6. |
[6] |
H. Föllmer, Random fields and diffusion processes, École d' Été de Probabilités de Saint-Flour XV-XVII,1985-87 Lect. Notes in Math., Springer, 1362 (1988), 101-123.
doi: 10.1007/BFb0086180. |
[7] |
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North Holland, Amsterdam (Kodansha Ltd., Tokyo), 1981. |
[8] |
H. H. Kuo, Gaussian Measures in Banach Spaces, Lect.Notes in Math., 463 Springer, 1975. |
[9] |
L. D. Landau and E. M. Lifshitz, Cours de Physique Théorique, Editions Mir Moscou U.R.S.S., 4th edition, 1988. |
[10] |
J. A. Lázaro-Cami and J. P. Ortega, Stochastic Hamiltonian dynamical systems, Rep. Math. Phys., 61 (2008), 65-112.
doi: 10.1016/S0034-4877(08)80003-1. |
[11] |
C. Leonard, A survey of the Schrödinger problem and some of its connections with optimal transport, Discrete and Cont. Dyn. Systems A, 34 (2014), 1533-1574.
doi: 10.3934/dcds.2014.34.1533. |
[12] |
C. Leonard, S. Roelly and J. C. Zambrini, Reciprocal processes: A measure-theoretical point of view, Probability Surveys, 11 (2014), 237-269.
doi: 10.1214/13-PS220. |
[13] |
E. Schrödinger, Sur la théorie relativiste de l'electron et l?interprétation de la mécanique quantique, Ann. Inst. H. Poincaré, 2 (1932), p269. |
[14] |
M. Thieullen and J. C. Zambrini, Probability and quantum symmetries I, the theorem of Noether in Schrödinger's euclidean quantum mechanics, Ann. Inst. H.Poincaré, Phys. theo., 67 (1997), 297-338. |
[15] |
P. Vuillermot and J. C. Zambrini, Bernstein diffusions for a class of linear parabolic partial differential equations, Journal of Theoretical Probability, 27 (2014), 449-492.
doi: 10.1007/s10959-012-0426-3. |
[16] |
J. C. Zambrini, Stochastic mechanics according to E. Schrödinger, Physical Review A, 33 (1986), 1532-1548.
doi: 10.1103/PhysRevA.33.1532. |
[17] |
J. C. Zambrini, Variational processes and stochastic versions of mechanics, J. Math. Phys., 27 (1986), 2307-2330.
doi: 10.1063/1.527002. |
[18] |
J. C. Zambrini, The Research Program of Stochastic Deformation (with a View Toward Geometric Mechanics), Stochastic Analysis, a Series of lectures, Centre interfacultaire Bernouilli, EPFL, Program in Probability 68, Edit R.C. Dalang, M.Dozzi, F. Flandoli, F. Russo, Birkhäuser, 2015. |
show all references
References:
[1] |
R. Abraham and J. E. Masden, Foundations of mechanics, Am. J. Phys., 36 (1968), p280.
doi: 10.1119/1.1974504. |
[2] |
V. I. Arnold, Mathematical methods of classical mechanics, second edition graduate texts in mathematics, 60, Springer-verlag, 1989.
doi: 10.1007/978-1-4757-2063-1. |
[3] |
J.-M. Bismut, Mécanique Aléatoire, Lecture notes in mathematics, 866, Springer, 1981. |
[4] |
J. Cresson and S. Darses, Plongement stochastique des systèmes Lagrangiens, Compte rendu Mathématique, 342 (2006), 333-346.
doi: 10.1016/j.crma.2005.12.028. |
[5] |
A. B. Cruzeiro and R. Lassalle, On the least action principle for the Navier-Stokes equation, Springer Proceedings in Mathematics and Statistics, 100 (2014), 163-184.
doi: 10.1007/978-3-319-11292-3_6. |
[6] |
H. Föllmer, Random fields and diffusion processes, École d' Été de Probabilités de Saint-Flour XV-XVII,1985-87 Lect. Notes in Math., Springer, 1362 (1988), 101-123.
doi: 10.1007/BFb0086180. |
[7] |
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North Holland, Amsterdam (Kodansha Ltd., Tokyo), 1981. |
[8] |
H. H. Kuo, Gaussian Measures in Banach Spaces, Lect.Notes in Math., 463 Springer, 1975. |
[9] |
L. D. Landau and E. M. Lifshitz, Cours de Physique Théorique, Editions Mir Moscou U.R.S.S., 4th edition, 1988. |
[10] |
J. A. Lázaro-Cami and J. P. Ortega, Stochastic Hamiltonian dynamical systems, Rep. Math. Phys., 61 (2008), 65-112.
doi: 10.1016/S0034-4877(08)80003-1. |
[11] |
C. Leonard, A survey of the Schrödinger problem and some of its connections with optimal transport, Discrete and Cont. Dyn. Systems A, 34 (2014), 1533-1574.
doi: 10.3934/dcds.2014.34.1533. |
[12] |
C. Leonard, S. Roelly and J. C. Zambrini, Reciprocal processes: A measure-theoretical point of view, Probability Surveys, 11 (2014), 237-269.
doi: 10.1214/13-PS220. |
[13] |
E. Schrödinger, Sur la théorie relativiste de l'electron et l?interprétation de la mécanique quantique, Ann. Inst. H. Poincaré, 2 (1932), p269. |
[14] |
M. Thieullen and J. C. Zambrini, Probability and quantum symmetries I, the theorem of Noether in Schrödinger's euclidean quantum mechanics, Ann. Inst. H.Poincaré, Phys. theo., 67 (1997), 297-338. |
[15] |
P. Vuillermot and J. C. Zambrini, Bernstein diffusions for a class of linear parabolic partial differential equations, Journal of Theoretical Probability, 27 (2014), 449-492.
doi: 10.1007/s10959-012-0426-3. |
[16] |
J. C. Zambrini, Stochastic mechanics according to E. Schrödinger, Physical Review A, 33 (1986), 1532-1548.
doi: 10.1103/PhysRevA.33.1532. |
[17] |
J. C. Zambrini, Variational processes and stochastic versions of mechanics, J. Math. Phys., 27 (1986), 2307-2330.
doi: 10.1063/1.527002. |
[18] |
J. C. Zambrini, The Research Program of Stochastic Deformation (with a View Toward Geometric Mechanics), Stochastic Analysis, a Series of lectures, Centre interfacultaire Bernouilli, EPFL, Program in Probability 68, Edit R.C. Dalang, M.Dozzi, F. Flandoli, F. Russo, Birkhäuser, 2015. |
[1] |
Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511 |
[2] |
Menita Carozza, Jan Kristensen, Antonia Passarelli di Napoli. On the validity of the Euler-Lagrange system. Communications on Pure and Applied Analysis, 2015, 14 (1) : 51-62. doi: 10.3934/cpaa.2015.14.51 |
[3] |
Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449 |
[4] |
Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577 |
[5] |
Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987 |
[6] |
Yuan Xu, Xin Jin, Saiwei Wang, Yang Tang. Optimal synchronization control of multiple euler-lagrange systems via event-triggered reinforcement learning. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1495-1518. doi: 10.3934/dcdss.2020377 |
[7] |
Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295 |
[8] |
TÔn Vı$\underset{.}{\overset{\hat{\ }}{\mathop{\text{E}}}}\, $T T$\mathop {\text{A}}\limits_. $, Linhthi hoai Nguyen, Atsushi Yagi. A sustainability condition for stochastic forest model. Communications on Pure and Applied Analysis, 2017, 16 (2) : 699-718. doi: 10.3934/cpaa.2017034 |
[9] |
Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499 |
[10] |
Franco Flandoli, Dejun Luo. Euler-Lagrangian approach to 3D stochastic Euler equations. Journal of Geometric Mechanics, 2019, 11 (2) : 153-165. doi: 10.3934/jgm.2019008 |
[11] |
Liangquan Zhang, Qing Zhou, Juan Yang. Necessary condition for optimal control of doubly stochastic systems. Mathematical Control and Related Fields, 2020, 10 (2) : 379-403. doi: 10.3934/mcrf.2020002 |
[12] |
Ana Bela Cruzeiro. Navier-Stokes and stochastic Navier-Stokes equations via Lagrange multipliers. Journal of Geometric Mechanics, 2019, 11 (4) : 553-560. doi: 10.3934/jgm.2019027 |
[13] |
Peter Brune, Björn Schmalfuss. Inertial manifolds for stochastic pde with dynamical boundary conditions. Communications on Pure and Applied Analysis, 2011, 10 (3) : 831-846. doi: 10.3934/cpaa.2011.10.831 |
[14] |
Jens Lang, Pascal Mindt. Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks and Heterogeneous Media, 2018, 13 (1) : 177-190. doi: 10.3934/nhm.2018008 |
[15] |
Bahareh Akhtari, Esmail Babolian, Andreas Neuenkirch. An Euler scheme for stochastic delay differential equations on unbounded domains: Pathwise convergence. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 23-38. doi: 10.3934/dcdsb.2015.20.23 |
[16] |
Weiyin Fei, Liangjian Hu, Xuerong Mao, Dengfeng Xia. Advances in the truncated Euler–Maruyama method for stochastic differential delay equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2081-2100. doi: 10.3934/cpaa.2020092 |
[17] |
Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343 |
[18] |
Marvin S. Müller. Approximation of the interface condition for stochastic Stefan-type problems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4317-4339. doi: 10.3934/dcdsb.2019121 |
[19] |
Leonid Shaikhet. Improved condition for stabilization of controlled inverted pendulum under stochastic perturbations. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1335-1343. doi: 10.3934/dcds.2009.24.1335 |
[20] |
Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122 |
2021 Impact Factor: 0.737
Tools
Metrics
Other articles
by authors
[Back to Top]