Citation: |
[1] |
A. Bastiani, Applications différentiables et variétés différentiables de dimension infinie}, J. Analyse Math., 13 (1964), 1-114.doi: 10.1007/BF02786619. |
[2] |
M. Bauer and M. Bruveris, A new riemannian setting for surface registration, 2011, 182-193, URL http://hal.inria.fr/inria-00624210. |
[3] |
M. Bauer, M. Bruveris, S. Marsland and P. W. Michor, Constructing reparameterization invariant metrics on spaces of plane curves, Differential Geometry and its Applications, 34 (2014), 139-165.doi: 10.1016/j.difgeo.2014.04.008. |
[4] |
M. Bauer, M. Bruveris and P. W. Michor, Overview of the geometries of shape spaces and diffeomorphism groups, Journal of Mathematical Imaging and Vision, 1-38. |
[5] |
M. Bauer, M. Eslitzbichler and M. Grasmair, Landmark-Guided Elastic Shape Analysis of Human Character Motions, arXiv:1502.07666 [cs], URL http://arxiv.org/abs/1502.07666. |
[6] |
M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on shape space of surfaces, Journal of Geometric Mechanics, 3 (2011), 389-438. |
[7] |
M. Bauer, M. Bruveris and P. W. Michor, Why use Sobolev metrics on the space of curves, in Riemannian computing in computer vision, Springer, Cham, 2016, 233-255. |
[8] |
Carnegie-Mellon, Carnegie-Mellon Mocap Database, 2003, URL http://mocap.cs.cmu.edu/. |
[9] |
E. Celledoni, H. Marthinsen and B. Owren, An introduction to lie group integrators - basics, new developments and applications, J. Comput. Phys., 257 (2014), 1040-1061.doi: 10.1016/j.jcp.2012.12.031. |
[10] |
E. Celledoni and B. Owren, Lie group methods for rigid body dynamics and time integration on manifolds, Computer Methods in Applied Mechanics and Engineering, 192 (2003), 421-438.doi: 10.1016/S0045-7825(02)00520-0. |
[11] |
J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. |
[12] |
C. J. Cotter, A. Clark and J. Peiró, A Reparameterisation Based Approach to Geodesic Constrained Solvers for Curve Matching, International Journal of Computer Vision, 99 (2012), 103-121.doi: 10.1007/s11263-012-0520-0. |
[13] |
T. Dobrowolski, Every infinite-dimensional Hilbert space is real-analytically isomorphic with its unit sphere, J. Funct. Anal., 134 (1995), 350-362.doi: 10.1006/jfan.1995.1149. |
[14] |
R. Engelking, General Topology, vol. 6 of Sigma Series in Pure Mathematics, 2nd edition, Heldermann Verlag, Berlin, 1989. |
[15] |
M. Eslitzbichler, Modelling character motions on infinite-dimensional manifolds, The Visual Computer, 31 (2015), 1179-1190.doi: 10.1007/s00371-014-1001-y. |
[16] |
M. Fuchs, B. Jüttler, O. Scherzer and H. Yang, Shape Metrics Based on Elastic Deformations, Journal of Mathematical Imaging and Vision, 35 (2009), 86-102.doi: 10.1007/s10851-009-0156-z. |
[17] |
H. Glöckner, Regularity properties of infinite-dimensional Lie groups, and semiregularity, 2012, URL http://arxiv.org/abs/1208.0715, arXiv: 1208.0715 [math]. |
[18] |
H. Glöckner, Fundamentals of submersions and immersions between infinite-dimensional manifolds, 2015, URL http://arxiv.org/abs/1208.0715, arXiv:1502.05795v3 [math]. |
[19] |
G. González Castro, M. Athanasopoulos and H. Ugail, Cyclic animation using partial differential equations, The Visual Computer, 26 (2010), 325-338. |
[20] |
F. Hausdorff, Die symbolische Exponentialformel in der Gruppentheorie, Leipz. Ber., 58 (1906), 19-48. |
[21] |
J. Hilgert and K. H. Neeb, Structure and Geometry of Lie Groups, Springer Monographs in Mathematics, Springer, New York, 2012.doi: 10.1007/978-0-387-84794-8. |
[22] |
A. Iserles, H. Z. Munthe-Kaas, S. P. Nrsett and A. Zanna, Lie-group methods, Acta Numerica, 9 (2000), 215-365.doi: 10.1017/S0962492900002154. |
[23] |
E. Klassen and A. Srivastava, A path-straightening method for finding geodesics in shape spaces of closed curves in R3, SIAM Journal of Applied Mathematics, URL http://stat.fsu.edu/~anuj/pdf/papers/3DCurves.pdf. |
[24] |
L. Kovar and M. Gleicher, Flexible Automatic Motion Blending with Registration Curves, in Proceedings of the 2003 ACMSIGGRAPH/Eurographics Symposium on Computer Animation, SCA '03, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 2003, 214-224. |
[25] |
L. Kovar and M. Gleicher, Automated extraction and parameterization of motions in large data sets, in ACM Transactions on Graphics (TOG), ACM, 23 (2004), 559-568.doi: 10.1145/1186562.1015760. |
[26] |
L. Kovar, M. Gleicher and F. Pighin, Motion graphs, ACM Trans. Graph., 21 (2002), 473-482. |
[27] |
A. Kriegl and P. W. Michor, Regular infinite dimensional Lie groups, Journal of Lie Theory, 7 (1997), 61-99. |
[28] |
A. Kriegl and P. W. Michor, The convenient Setting of Global Analysis, vol. 53 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1997.doi: 10.1090/surv/053. |
[29] |
S. Kurtek, E. Klassen, Z. Ding and A. Srivastava, A novel riemannian framework for shape analysis of 3d objects, in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010, 1625-1632.doi: 10.1109/CVPR.2010.5539778. |
[30] |
S. Kurtek and A. Srivastava, Elastic symmetry analysis of anatomical structures, in 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), 2012, 33-38.doi: 10.1109/MMBIA.2012.6164739. |
[31] |
S. Lahiri, D. Robinson and E. Klassen, Precise matching of PL curves in $\mathbbR^N$ in the square root velocity framework, Geom. Imaging Comput., 2 (2015), 133-186, \urlprefixhttp://arxiv.org/abs/1501.00577, arXiv:1501.00577 [math].doi: 10.4310/GIC.2015.v2.n3.a1. |
[32] |
S. Lang, Fundamentals of Differential Geometry, vol. 191 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1999.doi: 10.1007/978-1-4612-0541-8. |
[33] |
P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach, Applied and Computational Harmonic Analysis, 23 (2007), 74-113.doi: 10.1016/j.acha.2006.07.004. |
[34] |
W. Mio, A. Srivastava and S. Joshi, On shape of plane elastic curves, Int. J. Comput. Vision, 73 (2007), 307-324.doi: 10.1007/s11263-006-9968-0. |
[35] |
K.-H. Neeb, Towards a Lie theory of locally convex groups, Jpn. J. Math., 1 (2006), 291-468.doi: 10.1007/s11537-006-0606-y. |
[36] |
T. Pejsa and I. Pandzic, State of the art in example-based motion synthesis for virtual characters in interactive applications, Computer Graphics Forum, 29 (2010), 202-226.doi: 10.1111/j.1467-8659.2009.01591.x. |
[37] |
A. Schmeding and C. Wockel, The Lie group of bisections of a Lie groupoid, Ann. Global Anal. Geom., 48 (2015), 87-123.doi: 10.1007/s10455-015-9459-z. |
[38] |
T. Sebastian, P. Klein and B. Kimia, On aligning curves, IEEE Transactions on Pattern Analysis and Machine Intelligence, 25 (2003), 116-125.doi: 10.1109/TPAMI.2003.1159951. |
[39] |
E. Sharon and D. Mumford, 2d-shape analysis using conformal mapping, International Journal of Computer Vision, 70 (2006), 55-75.doi: 10.1109/CVPR.2004.1315185. |
[40] |
K. Shoemake, Animating rotation with quaternion curves, SIGGRAPH Comput. Graph., 19 (1985), 245-254.doi: 10.1145/325334.325242. |
[41] |
A. Srivastava, S. Joshi, W. Mio and X. Liu, Statistical shape analysis: Clustering, learning, and testing, IEEE Trans. Pattern Anal. Mach. Intell, 27 (2005), 590-602.doi: 10.1109/TPAMI.2005.86. |
[42] |
A. Srivastava, E. Klassen, S. Joshi and I. Jermyn, Shape analysis of elastic curves in euclidean spaces, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 1415 -1428.doi: 10.1109/TPAMI.2010.184. |
[43] |
J. Su, S. Kurtek, E. Klassen and A. Srivastava, Statistical analysis of trajectories on Riemannian manifolds: Bird migration, hurricane tracking and video surveillance, The Annals of Applied Statistics, 8 (2014), 530-552.doi: 10.1214/13-AOAS701. |
[44] |
J. Su, A. Srivastava, F. de Souza and S. Sarkar, Rate-invariant analysis of trajectories on riemannian manifolds with application in visual speech recognition, in 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, 620-627.doi: 10.1109/CVPR.2014.86. |
[45] |
L. Younes, Computable elastic distances between shapes, SIAM Journal on Applied Mathematics, 58 (1998), 565-586.doi: 10.1137/S0036139995287685. |
[46] |
L. Younes, Spaces and manifolds of shapes in computer vision: An overview, Image and Vision Computing, 30 (2012), 389-397.doi: 10.1016/j.imavis.2011.09.009. |