September  2016, 8(3): 273-304. doi: 10.3934/jgm.2016008

Shape analysis on Lie groups with applications in computer animation

1. 

Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway, Norway, Norway

Received  June 2015 Revised  May 2016 Published  September 2016

Shape analysis methods have in the past few years become very popular, both for theoretical exploration as well as from an application point of view. Originally developed for planar curves, these methods have been expanded to higher dimensional curves, surfaces, activities, character motions and many other objects.
    In this paper, we develop a framework for shape analysis of curves in Lie groups for problems of computer animations. In particular, we will use these methods to find cyclic approximations of non-cyclic character animations and interpolate between existing animations to generate new ones.
Citation: Elena Celledoni, Markus Eslitzbichler, Alexander Schmeding. Shape analysis on Lie groups with applications in computer animation. Journal of Geometric Mechanics, 2016, 8 (3) : 273-304. doi: 10.3934/jgm.2016008
References:
[1]

A. Bastiani, Applications différentiables et variétés différentiables de dimension infinie},, J. Analyse Math., 13 (1964), 1.  doi: 10.1007/BF02786619.  Google Scholar

[2]

M. Bauer and M. Bruveris, A new riemannian setting for surface registration, 2011,, 182-193, (): 182.   Google Scholar

[3]

M. Bauer, M. Bruveris, S. Marsland and P. W. Michor, Constructing reparameterization invariant metrics on spaces of plane curves,, Differential Geometry and its Applications, 34 (2014), 139.  doi: 10.1016/j.difgeo.2014.04.008.  Google Scholar

[4]

M. Bauer, M. Bruveris and P. W. Michor, Overview of the geometries of shape spaces and diffeomorphism groups,, Journal of Mathematical Imaging and Vision, (): 1.   Google Scholar

[5]

M. Bauer, M. Eslitzbichler and M. Grasmair, Landmark-Guided Elastic Shape Analysis of Human Character Motions,, arXiv:1502.07666 [cs], ().   Google Scholar

[6]

M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on shape space of surfaces,, Journal of Geometric Mechanics, 3 (2011), 389.   Google Scholar

[7]

M. Bauer, M. Bruveris and P. W. Michor, Why use Sobolev metrics on the space of curves,, in Riemannian computing in computer vision, (2016), 233.   Google Scholar

[8]

Carnegie-Mellon, Carnegie-Mellon Mocap Database, 2003,, URL , ().   Google Scholar

[9]

E. Celledoni, H. Marthinsen and B. Owren, An introduction to lie group integrators - basics, new developments and applications,, J. Comput. Phys., 257 (2014), 1040.  doi: 10.1016/j.jcp.2012.12.031.  Google Scholar

[10]

E. Celledoni and B. Owren, Lie group methods for rigid body dynamics and time integration on manifolds,, Computer Methods in Applied Mechanics and Engineering, 192 (2003), 421.  doi: 10.1016/S0045-7825(02)00520-0.  Google Scholar

[11]

J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry,, North-Holland Publishing Co., (1975).   Google Scholar

[12]

C. J. Cotter, A. Clark and J. Peiró, A Reparameterisation Based Approach to Geodesic Constrained Solvers for Curve Matching,, International Journal of Computer Vision, 99 (2012), 103.  doi: 10.1007/s11263-012-0520-0.  Google Scholar

[13]

T. Dobrowolski, Every infinite-dimensional Hilbert space is real-analytically isomorphic with its unit sphere,, J. Funct. Anal., 134 (1995), 350.  doi: 10.1006/jfan.1995.1149.  Google Scholar

[14]

R. Engelking, General Topology, vol. 6 of Sigma Series in Pure Mathematics,, 2nd edition, (1989).   Google Scholar

[15]

M. Eslitzbichler, Modelling character motions on infinite-dimensional manifolds,, The Visual Computer, 31 (2015), 1179.  doi: 10.1007/s00371-014-1001-y.  Google Scholar

[16]

M. Fuchs, B. Jüttler, O. Scherzer and H. Yang, Shape Metrics Based on Elastic Deformations,, Journal of Mathematical Imaging and Vision, 35 (2009), 86.  doi: 10.1007/s10851-009-0156-z.  Google Scholar

[17]

H. Glöckner, Regularity properties of infinite-dimensional Lie groups, and semiregularity, 2012,, URL , (1208).   Google Scholar

[18]

H. Glöckner, Fundamentals of submersions and immersions between infinite-dimensional manifolds, 2015,, URL , ().   Google Scholar

[19]

G. González Castro, M. Athanasopoulos and H. Ugail, Cyclic animation using partial differential equations,, The Visual Computer, 26 (2010), 325.   Google Scholar

[20]

F. Hausdorff, Die symbolische Exponentialformel in der Gruppentheorie,, Leipz. Ber., 58 (1906), 19.   Google Scholar

[21]

J. Hilgert and K. H. Neeb, Structure and Geometry of Lie Groups,, Springer Monographs in Mathematics, (2012).  doi: 10.1007/978-0-387-84794-8.  Google Scholar

[22]

A. Iserles, H. Z. Munthe-Kaas, S. P. Nrsett and A. Zanna, Lie-group methods,, Acta Numerica, 9 (2000), 215.  doi: 10.1017/S0962492900002154.  Google Scholar

[23]

E. Klassen and A. Srivastava, A path-straightening method for finding geodesics in shape spaces of closed curves in R3,, SIAM Journal of Applied Mathematics, ().   Google Scholar

[24]

L. Kovar and M. Gleicher, Flexible Automatic Motion Blending with Registration Curves,, in Proceedings of the 2003 ACMSIGGRAPH/Eurographics Symposium on Computer Animation, (2003), 214.   Google Scholar

[25]

L. Kovar and M. Gleicher, Automated extraction and parameterization of motions in large data sets,, in ACM Transactions on Graphics (TOG), 23 (2004), 559.  doi: 10.1145/1186562.1015760.  Google Scholar

[26]

L. Kovar, M. Gleicher and F. Pighin, Motion graphs,, ACM Trans. Graph., 21 (2002), 473.   Google Scholar

[27]

A. Kriegl and P. W. Michor, Regular infinite dimensional Lie groups,, Journal of Lie Theory, 7 (1997), 61.   Google Scholar

[28]

A. Kriegl and P. W. Michor, The convenient Setting of Global Analysis, vol. 53 of Mathematical Surveys and Monographs,, American Mathematical Society, (1997).  doi: 10.1090/surv/053.  Google Scholar

[29]

S. Kurtek, E. Klassen, Z. Ding and A. Srivastava, A novel riemannian framework for shape analysis of 3d objects,, in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2010), 1625.  doi: 10.1109/CVPR.2010.5539778.  Google Scholar

[30]

S. Kurtek and A. Srivastava, Elastic symmetry analysis of anatomical structures,, in 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), (2012), 33.  doi: 10.1109/MMBIA.2012.6164739.  Google Scholar

[31]

S. Lahiri, D. Robinson and E. Klassen, Precise matching of PL curves in $\mathbbR^N$ in the square root velocity framework,, Geom. Imaging Comput., 2 (2015), 133.  doi: 10.4310/GIC.2015.v2.n3.a1.  Google Scholar

[32]

S. Lang, Fundamentals of Differential Geometry, vol. 191 of Graduate Texts in Mathematics,, Springer-Verlag, (1999).  doi: 10.1007/978-1-4612-0541-8.  Google Scholar

[33]

P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Applied and Computational Harmonic Analysis, 23 (2007), 74.  doi: 10.1016/j.acha.2006.07.004.  Google Scholar

[34]

W. Mio, A. Srivastava and S. Joshi, On shape of plane elastic curves,, Int. J. Comput. Vision, 73 (2007), 307.  doi: 10.1007/s11263-006-9968-0.  Google Scholar

[35]

K.-H. Neeb, Towards a Lie theory of locally convex groups,, Jpn. J. Math., 1 (2006), 291.  doi: 10.1007/s11537-006-0606-y.  Google Scholar

[36]

T. Pejsa and I. Pandzic, State of the art in example-based motion synthesis for virtual characters in interactive applications,, Computer Graphics Forum, 29 (2010), 202.  doi: 10.1111/j.1467-8659.2009.01591.x.  Google Scholar

[37]

A. Schmeding and C. Wockel, The Lie group of bisections of a Lie groupoid,, Ann. Global Anal. Geom., 48 (2015), 87.  doi: 10.1007/s10455-015-9459-z.  Google Scholar

[38]

T. Sebastian, P. Klein and B. Kimia, On aligning curves,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 25 (2003), 116.  doi: 10.1109/TPAMI.2003.1159951.  Google Scholar

[39]

E. Sharon and D. Mumford, 2d-shape analysis using conformal mapping,, International Journal of Computer Vision, 70 (2006), 55.  doi: 10.1109/CVPR.2004.1315185.  Google Scholar

[40]

K. Shoemake, Animating rotation with quaternion curves,, SIGGRAPH Comput. Graph., 19 (1985), 245.  doi: 10.1145/325334.325242.  Google Scholar

[41]

A. Srivastava, S. Joshi, W. Mio and X. Liu, Statistical shape analysis: Clustering, learning, and testing,, IEEE Trans. Pattern Anal. Mach. Intell, 27 (2005), 590.  doi: 10.1109/TPAMI.2005.86.  Google Scholar

[42]

A. Srivastava, E. Klassen, S. Joshi and I. Jermyn, Shape analysis of elastic curves in euclidean spaces,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011).  doi: 10.1109/TPAMI.2010.184.  Google Scholar

[43]

J. Su, S. Kurtek, E. Klassen and A. Srivastava, Statistical analysis of trajectories on Riemannian manifolds: Bird migration, hurricane tracking and video surveillance,, The Annals of Applied Statistics, 8 (2014), 530.  doi: 10.1214/13-AOAS701.  Google Scholar

[44]

J. Su, A. Srivastava, F. de Souza and S. Sarkar, Rate-invariant analysis of trajectories on riemannian manifolds with application in visual speech recognition,, in 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2014), 620.  doi: 10.1109/CVPR.2014.86.  Google Scholar

[45]

L. Younes, Computable elastic distances between shapes,, SIAM Journal on Applied Mathematics, 58 (1998), 565.  doi: 10.1137/S0036139995287685.  Google Scholar

[46]

L. Younes, Spaces and manifolds of shapes in computer vision: An overview,, Image and Vision Computing, 30 (2012), 389.  doi: 10.1016/j.imavis.2011.09.009.  Google Scholar

show all references

References:
[1]

A. Bastiani, Applications différentiables et variétés différentiables de dimension infinie},, J. Analyse Math., 13 (1964), 1.  doi: 10.1007/BF02786619.  Google Scholar

[2]

M. Bauer and M. Bruveris, A new riemannian setting for surface registration, 2011,, 182-193, (): 182.   Google Scholar

[3]

M. Bauer, M. Bruveris, S. Marsland and P. W. Michor, Constructing reparameterization invariant metrics on spaces of plane curves,, Differential Geometry and its Applications, 34 (2014), 139.  doi: 10.1016/j.difgeo.2014.04.008.  Google Scholar

[4]

M. Bauer, M. Bruveris and P. W. Michor, Overview of the geometries of shape spaces and diffeomorphism groups,, Journal of Mathematical Imaging and Vision, (): 1.   Google Scholar

[5]

M. Bauer, M. Eslitzbichler and M. Grasmair, Landmark-Guided Elastic Shape Analysis of Human Character Motions,, arXiv:1502.07666 [cs], ().   Google Scholar

[6]

M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on shape space of surfaces,, Journal of Geometric Mechanics, 3 (2011), 389.   Google Scholar

[7]

M. Bauer, M. Bruveris and P. W. Michor, Why use Sobolev metrics on the space of curves,, in Riemannian computing in computer vision, (2016), 233.   Google Scholar

[8]

Carnegie-Mellon, Carnegie-Mellon Mocap Database, 2003,, URL , ().   Google Scholar

[9]

E. Celledoni, H. Marthinsen and B. Owren, An introduction to lie group integrators - basics, new developments and applications,, J. Comput. Phys., 257 (2014), 1040.  doi: 10.1016/j.jcp.2012.12.031.  Google Scholar

[10]

E. Celledoni and B. Owren, Lie group methods for rigid body dynamics and time integration on manifolds,, Computer Methods in Applied Mechanics and Engineering, 192 (2003), 421.  doi: 10.1016/S0045-7825(02)00520-0.  Google Scholar

[11]

J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry,, North-Holland Publishing Co., (1975).   Google Scholar

[12]

C. J. Cotter, A. Clark and J. Peiró, A Reparameterisation Based Approach to Geodesic Constrained Solvers for Curve Matching,, International Journal of Computer Vision, 99 (2012), 103.  doi: 10.1007/s11263-012-0520-0.  Google Scholar

[13]

T. Dobrowolski, Every infinite-dimensional Hilbert space is real-analytically isomorphic with its unit sphere,, J. Funct. Anal., 134 (1995), 350.  doi: 10.1006/jfan.1995.1149.  Google Scholar

[14]

R. Engelking, General Topology, vol. 6 of Sigma Series in Pure Mathematics,, 2nd edition, (1989).   Google Scholar

[15]

M. Eslitzbichler, Modelling character motions on infinite-dimensional manifolds,, The Visual Computer, 31 (2015), 1179.  doi: 10.1007/s00371-014-1001-y.  Google Scholar

[16]

M. Fuchs, B. Jüttler, O. Scherzer and H. Yang, Shape Metrics Based on Elastic Deformations,, Journal of Mathematical Imaging and Vision, 35 (2009), 86.  doi: 10.1007/s10851-009-0156-z.  Google Scholar

[17]

H. Glöckner, Regularity properties of infinite-dimensional Lie groups, and semiregularity, 2012,, URL , (1208).   Google Scholar

[18]

H. Glöckner, Fundamentals of submersions and immersions between infinite-dimensional manifolds, 2015,, URL , ().   Google Scholar

[19]

G. González Castro, M. Athanasopoulos and H. Ugail, Cyclic animation using partial differential equations,, The Visual Computer, 26 (2010), 325.   Google Scholar

[20]

F. Hausdorff, Die symbolische Exponentialformel in der Gruppentheorie,, Leipz. Ber., 58 (1906), 19.   Google Scholar

[21]

J. Hilgert and K. H. Neeb, Structure and Geometry of Lie Groups,, Springer Monographs in Mathematics, (2012).  doi: 10.1007/978-0-387-84794-8.  Google Scholar

[22]

A. Iserles, H. Z. Munthe-Kaas, S. P. Nrsett and A. Zanna, Lie-group methods,, Acta Numerica, 9 (2000), 215.  doi: 10.1017/S0962492900002154.  Google Scholar

[23]

E. Klassen and A. Srivastava, A path-straightening method for finding geodesics in shape spaces of closed curves in R3,, SIAM Journal of Applied Mathematics, ().   Google Scholar

[24]

L. Kovar and M. Gleicher, Flexible Automatic Motion Blending with Registration Curves,, in Proceedings of the 2003 ACMSIGGRAPH/Eurographics Symposium on Computer Animation, (2003), 214.   Google Scholar

[25]

L. Kovar and M. Gleicher, Automated extraction and parameterization of motions in large data sets,, in ACM Transactions on Graphics (TOG), 23 (2004), 559.  doi: 10.1145/1186562.1015760.  Google Scholar

[26]

L. Kovar, M. Gleicher and F. Pighin, Motion graphs,, ACM Trans. Graph., 21 (2002), 473.   Google Scholar

[27]

A. Kriegl and P. W. Michor, Regular infinite dimensional Lie groups,, Journal of Lie Theory, 7 (1997), 61.   Google Scholar

[28]

A. Kriegl and P. W. Michor, The convenient Setting of Global Analysis, vol. 53 of Mathematical Surveys and Monographs,, American Mathematical Society, (1997).  doi: 10.1090/surv/053.  Google Scholar

[29]

S. Kurtek, E. Klassen, Z. Ding and A. Srivastava, A novel riemannian framework for shape analysis of 3d objects,, in 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2010), 1625.  doi: 10.1109/CVPR.2010.5539778.  Google Scholar

[30]

S. Kurtek and A. Srivastava, Elastic symmetry analysis of anatomical structures,, in 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), (2012), 33.  doi: 10.1109/MMBIA.2012.6164739.  Google Scholar

[31]

S. Lahiri, D. Robinson and E. Klassen, Precise matching of PL curves in $\mathbbR^N$ in the square root velocity framework,, Geom. Imaging Comput., 2 (2015), 133.  doi: 10.4310/GIC.2015.v2.n3.a1.  Google Scholar

[32]

S. Lang, Fundamentals of Differential Geometry, vol. 191 of Graduate Texts in Mathematics,, Springer-Verlag, (1999).  doi: 10.1007/978-1-4612-0541-8.  Google Scholar

[33]

P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Applied and Computational Harmonic Analysis, 23 (2007), 74.  doi: 10.1016/j.acha.2006.07.004.  Google Scholar

[34]

W. Mio, A. Srivastava and S. Joshi, On shape of plane elastic curves,, Int. J. Comput. Vision, 73 (2007), 307.  doi: 10.1007/s11263-006-9968-0.  Google Scholar

[35]

K.-H. Neeb, Towards a Lie theory of locally convex groups,, Jpn. J. Math., 1 (2006), 291.  doi: 10.1007/s11537-006-0606-y.  Google Scholar

[36]

T. Pejsa and I. Pandzic, State of the art in example-based motion synthesis for virtual characters in interactive applications,, Computer Graphics Forum, 29 (2010), 202.  doi: 10.1111/j.1467-8659.2009.01591.x.  Google Scholar

[37]

A. Schmeding and C. Wockel, The Lie group of bisections of a Lie groupoid,, Ann. Global Anal. Geom., 48 (2015), 87.  doi: 10.1007/s10455-015-9459-z.  Google Scholar

[38]

T. Sebastian, P. Klein and B. Kimia, On aligning curves,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 25 (2003), 116.  doi: 10.1109/TPAMI.2003.1159951.  Google Scholar

[39]

E. Sharon and D. Mumford, 2d-shape analysis using conformal mapping,, International Journal of Computer Vision, 70 (2006), 55.  doi: 10.1109/CVPR.2004.1315185.  Google Scholar

[40]

K. Shoemake, Animating rotation with quaternion curves,, SIGGRAPH Comput. Graph., 19 (1985), 245.  doi: 10.1145/325334.325242.  Google Scholar

[41]

A. Srivastava, S. Joshi, W. Mio and X. Liu, Statistical shape analysis: Clustering, learning, and testing,, IEEE Trans. Pattern Anal. Mach. Intell, 27 (2005), 590.  doi: 10.1109/TPAMI.2005.86.  Google Scholar

[42]

A. Srivastava, E. Klassen, S. Joshi and I. Jermyn, Shape analysis of elastic curves in euclidean spaces,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011).  doi: 10.1109/TPAMI.2010.184.  Google Scholar

[43]

J. Su, S. Kurtek, E. Klassen and A. Srivastava, Statistical analysis of trajectories on Riemannian manifolds: Bird migration, hurricane tracking and video surveillance,, The Annals of Applied Statistics, 8 (2014), 530.  doi: 10.1214/13-AOAS701.  Google Scholar

[44]

J. Su, A. Srivastava, F. de Souza and S. Sarkar, Rate-invariant analysis of trajectories on riemannian manifolds with application in visual speech recognition,, in 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2014), 620.  doi: 10.1109/CVPR.2014.86.  Google Scholar

[45]

L. Younes, Computable elastic distances between shapes,, SIAM Journal on Applied Mathematics, 58 (1998), 565.  doi: 10.1137/S0036139995287685.  Google Scholar

[46]

L. Younes, Spaces and manifolds of shapes in computer vision: An overview,, Image and Vision Computing, 30 (2012), 389.  doi: 10.1016/j.imavis.2011.09.009.  Google Scholar

[1]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[2]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[3]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[4]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[5]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[6]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[7]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[8]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[9]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[10]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[11]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[12]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[13]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[14]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[15]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[16]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[17]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[18]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[19]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[20]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (91)
  • HTML views (0)
  • Cited by (15)

[Back to Top]