\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The projective symplectic geometry of higher order variational problems: Minimality conditions

Abstract Related Papers Cited by
  • We associate curves of isotropic, Lagrangian and coisotropic subspaces to higher order, one parameter variational problems. Minimality and conjugacy properties of extremals are described in terms self-intersections of these curves.
    Mathematics Subject Classification: Primary: 49K05; Secondary: 53D12.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Agrachev, D. Barilari and L. Rizzi, Curvature: A variational approach, Memoirs of the AMS, to appear.

    [2]

    J. C. Álvarez Paiva and C. E. Durán, Geometric invariants of fanning curves, Adv. in Appl. Math., 42 (2009), 290-312.doi: 10.1016/j.aam.2006.07.008.

    [3]

    I. M. AndersonThe Variational Bicomplex, Cambridge University Press, to appear.

    [4]

    G. Cimmino, Estensione dell'identita di Picone alia pi generale equazione differenziale lineare ordinaria autoaggiuntar, R. Accad. Naz. Lincei, 28 (1939), 354-364.

    [5]

    W. A. Coppel, Disconjugacy, Springer-Verlag, 1971.

    [6]

    M. Crampin, W. Sarlet and F. Cantrijn, Higher-order differential equations and higher-order Lagrangian mechanics, Math. Proc. Cambridge Philos. Soc., 99 (1986), 565-587.doi: 10.1017/S0305004100064501.

    [7]

    C. E. Durán and C. Peixoto, Geometry of fanning curves in divisible Grassmannians, Differ. Geom. Appl., to appear.

    [8]

    C. E. Durán, J. C. Eidam and D. Otero, The projective symplectic geometry of higher order variational problems: Index theory, work in progress.

    [9]

    M. S. P. Eastham, The Picone identity for self-adjoint differential equations of even order, Mathematika, 20 (1973), 197-200.doi: 10.1112/S0025579300004769.

    [10]

    S. Easwaran, Quadratic functionals of $n$-th order, Canad. Math. Bull., 19 (1976), 159-167.doi: 10.4153/CMB-1976-024-6.

    [11]

    I. Gelfand and S. Fomin, Calculus of Variations, Dover, 2000.

    [12]

    M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Springer-Verlag, 1973.

    [13]

    R. Giambò, F. Giannoni and P. Piccione, Optimal control on riemannian manifolds by interpolation, Math. Control Signals Systems, 16 (2004), 278-296.doi: 10.1007/s00498-003-0139-3.

    [14]

    M. A. Javaloyes and H. Vitório, Zermelo navigation in pseudo-Finsler metrics, preprint, arXiv:1412.0465v1.

    [15]

    K. Kreith, A picone identity for first order differential systems, J. Math. Anal. Appl., 31 (1970), 297-308.doi: 10.1016/0022-247X(70)90024-7.

    [16]

    A. Kriegl and P. Michor, The Convenient Setting of Global Analysis, Math. Surveys and Monogr., 1997.doi: 10.1090/surv/053.

    [17]

    W. Leighton, Quadratic functionals of second order, Trans. Amer. Math. Soc., 151 (1970), 309-322.doi: 10.1090/S0002-9947-1970-0264485-1.

    [18]

    M. de León and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory, Elsevier, 1985.

    [19]

    F. Mercuri, P. Piccione and D. V. Tausk, Stability of the conjugate index, degenerate conjugate points and the Maslov index in semi-Riemannian geometry, Pacific J. Math., 206 (2002), 375-400.doi: 10.2140/pjm.2002.206.375.

    [20]

    G. Paternain, Geodesic Flows, Birkhauser, 1999.doi: 10.1007/978-1-4612-1600-1.

    [21]

    R. Palais, Morse theory on hilbert manifolds, Topology, 2 (1963), 299-340.doi: 10.1016/0040-9383(63)90013-2.

    [22]

    R. Palais, The Morse lemma for Banach spaces, Bull. Amer. Math. Soc., 75 (1969), 968-971.doi: 10.1090/S0002-9904-1969-12318-9.

    [23]

    R. Palais, Foundations of Global Non-linear Analysis, Benjamin and Co., New York, 1968.

    [24]

    M. Picone, Sui valori eccezionali di un parametro da cui dipende un'equazione differenziale lineare del secondo ordine, Ann. Scuola Norm. Sup. Pisa, 28 (1910), 1-141.

    [25]

    P. D. Prieto-Martínez and N. Romón-Roy, Higher-order mechanics: Variational principles and other topics, J. Geom. Mech., 5 (2013), 493-510.doi: 10.3934/jgm.2013.5.493.

    [26]

    R. Ruggiero, Dynamics and Global Geometry of Manifolds without Conjugate Points, Sociedade Brasileira de Matemática, Rio de Janeiro, 2007.

    [27]

    D. J. Saunders, The Geometry of Jet Bundles, London Math. Soc. Lecture Note Ser., 1989.doi: 10.1017/CBO9780511526411.

    [28]

    W. Tulczyjew, Sur la différentiele de Lagrange, C. R. Math. Acad. Sci. Paris, 280 (1975), 1295-1298.

    [29]

    E. J. Wilczynski, Projective Differential Geometry of Curves and Ruled Surfaces, Chelsea Publishing Co., 1962.

    [30]

    I. Zelenko and C. Li, Differential geometry of curves in Lagrange Grassmannians with given Young diagram, Differential Geom. Appl., 27 (2009), 723-742.doi: 10.1016/j.difgeo.2009.07.002.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(152) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return