Citation: |
[1] |
A. Agrachev, D. Barilari and L. Rizzi, Curvature: A variational approach, Memoirs of the AMS, to appear. |
[2] |
J. C. Álvarez Paiva and C. E. Durán, Geometric invariants of fanning curves, Adv. in Appl. Math., 42 (2009), 290-312.doi: 10.1016/j.aam.2006.07.008. |
[3] |
I. M. Anderson, The Variational Bicomplex, Cambridge University Press, to appear. |
[4] |
G. Cimmino, Estensione dell'identita di Picone alia pi generale equazione differenziale lineare ordinaria autoaggiuntar, R. Accad. Naz. Lincei, 28 (1939), 354-364. |
[5] | |
[6] |
M. Crampin, W. Sarlet and F. Cantrijn, Higher-order differential equations and higher-order Lagrangian mechanics, Math. Proc. Cambridge Philos. Soc., 99 (1986), 565-587.doi: 10.1017/S0305004100064501. |
[7] |
C. E. Durán and C. Peixoto, Geometry of fanning curves in divisible Grassmannians, Differ. Geom. Appl., to appear. |
[8] |
C. E. Durán, J. C. Eidam and D. Otero, The projective symplectic geometry of higher order variational problems: Index theory, work in progress. |
[9] |
M. S. P. Eastham, The Picone identity for self-adjoint differential equations of even order, Mathematika, 20 (1973), 197-200.doi: 10.1112/S0025579300004769. |
[10] |
S. Easwaran, Quadratic functionals of $n$-th order, Canad. Math. Bull., 19 (1976), 159-167.doi: 10.4153/CMB-1976-024-6. |
[11] |
I. Gelfand and S. Fomin, Calculus of Variations, Dover, 2000. |
[12] |
M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Springer-Verlag, 1973. |
[13] |
R. Giambò, F. Giannoni and P. Piccione, Optimal control on riemannian manifolds by interpolation, Math. Control Signals Systems, 16 (2004), 278-296.doi: 10.1007/s00498-003-0139-3. |
[14] |
M. A. Javaloyes and H. Vitório, Zermelo navigation in pseudo-Finsler metrics, preprint, arXiv:1412.0465v1. |
[15] |
K. Kreith, A picone identity for first order differential systems, J. Math. Anal. Appl., 31 (1970), 297-308.doi: 10.1016/0022-247X(70)90024-7. |
[16] |
A. Kriegl and P. Michor, The Convenient Setting of Global Analysis, Math. Surveys and Monogr., 1997.doi: 10.1090/surv/053. |
[17] |
W. Leighton, Quadratic functionals of second order, Trans. Amer. Math. Soc., 151 (1970), 309-322.doi: 10.1090/S0002-9947-1970-0264485-1. |
[18] |
M. de León and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory, Elsevier, 1985. |
[19] |
F. Mercuri, P. Piccione and D. V. Tausk, Stability of the conjugate index, degenerate conjugate points and the Maslov index in semi-Riemannian geometry, Pacific J. Math., 206 (2002), 375-400.doi: 10.2140/pjm.2002.206.375. |
[20] |
G. Paternain, Geodesic Flows, Birkhauser, 1999.doi: 10.1007/978-1-4612-1600-1. |
[21] |
R. Palais, Morse theory on hilbert manifolds, Topology, 2 (1963), 299-340.doi: 10.1016/0040-9383(63)90013-2. |
[22] |
R. Palais, The Morse lemma for Banach spaces, Bull. Amer. Math. Soc., 75 (1969), 968-971.doi: 10.1090/S0002-9904-1969-12318-9. |
[23] |
R. Palais, Foundations of Global Non-linear Analysis, Benjamin and Co., New York, 1968. |
[24] |
M. Picone, Sui valori eccezionali di un parametro da cui dipende un'equazione differenziale lineare del secondo ordine, Ann. Scuola Norm. Sup. Pisa, 28 (1910), 1-141. |
[25] |
P. D. Prieto-Martínez and N. Romón-Roy, Higher-order mechanics: Variational principles and other topics, J. Geom. Mech., 5 (2013), 493-510.doi: 10.3934/jgm.2013.5.493. |
[26] |
R. Ruggiero, Dynamics and Global Geometry of Manifolds without Conjugate Points, Sociedade Brasileira de Matemática, Rio de Janeiro, 2007. |
[27] |
D. J. Saunders, The Geometry of Jet Bundles, London Math. Soc. Lecture Note Ser., 1989.doi: 10.1017/CBO9780511526411. |
[28] |
W. Tulczyjew, Sur la différentiele de Lagrange, C. R. Math. Acad. Sci. Paris, 280 (1975), 1295-1298. |
[29] |
E. J. Wilczynski, Projective Differential Geometry of Curves and Ruled Surfaces, Chelsea Publishing Co., 1962. |
[30] |
I. Zelenko and C. Li, Differential geometry of curves in Lagrange Grassmannians with given Young diagram, Differential Geom. Appl., 27 (2009), 723-742.doi: 10.1016/j.difgeo.2009.07.002. |