Citation: |
[1] |
E. Andruchow, G. Larotonda, L. Recht and A. Varela, The left invariant metric in the general linear group, Journal of Geometry and Physics, 86 (2014), 241-257.doi: 10.1016/j.geomphys.2014.08.009. |
[2] |
D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas (Second Edition), Princeton reference, Princeton University Press, 2009.doi: 10.1515/9781400833344. |
[3] |
A. M. Bloch, P. E. Crouch, N. Nordkvist and A. K. Sanyal, Embedded geodesic problems and optimal control for matrix Lie groups, Journal of Geometric Mechanics, 3 (2011), 197-223.doi: 10.3934/jgm.2011.3.197. |
[4] |
P. G. Ciarlet, Three-Dimensional Elasticity, Number 1 in Studies in Mathematics and its Applications, Elsevier Science, 1988. |
[5] |
C. De Boor, A naive proof of the representation theorem for isotropic, linear asymmetric stress-strain relations, Journal of Elasticity, 15 (1985), 225-227.doi: 10.1007/BF00041995. |
[6] |
M. P. do Carmo, Riemannian Geometry, Birkhäuser Basel, 1992.doi: 10.1007/978-1-4757-2201-7. |
[7] |
J.-H. Eschenburg and J. Jost, Differentialgeometrie und Minimalflächen, Springer, 2007. |
[8] |
S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, Springer, 3 edition, 1990.doi: 10.1007/978-3-642-97242-3. |
[9] |
H. Hencky, Welche Umstände bedingen die Verfestigung bei der bildsamen Verformung von festen isotropen Körpern?, Zeitschrift für Physik, 55 (1929), 145-155. Available from: http://www.uni-due.de/imperia/md/content/mathematik/ag_neff/hencky1929.pdf. |
[10] |
N. J. Higham, Functions of Matrices: Theory and Computation, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.doi: 10.1137/1.9780898717778. |
[11] |
J. Jost, Riemannian Geometry and Geometric Analysis (2nd ed.), Springer, 1998.doi: 10.1007/978-3-662-22385-7. |
[12] | |
[13] |
J. Lankeit, P. Neff and Y. Nakatsukasa, The minimization of matrix logarithms: On a fundamental property of the unitary polar factor, Linear Algebra and its Applications, 449 (2014), 28-42.doi: 10.1016/j.laa.2014.02.012. |
[14] |
S. Lee, M. Choi, H. Kim and F. C. Park, Geometric direct search algorithms for image registration, IEEE Transactions on Image Processing, 16 (2007), 2215-2224.doi: 10.1109/TIP.2007.901809. |
[15] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, volume 17. Springer, 1999.doi: 10.1007/978-0-387-21792-5. |
[16] |
R. J. Martin and P. Neff, The GL(n)-geodesic distance on $SO(n)$, in preparation, 2016. |
[17] |
A. Mielke, Finite elastoplasticity, Lie groups and geodesics on $SL(d)$, in Geometry, Mechanics, and Dynamics, Springer, New York, 2002, 61-90.doi: 10.1007/0-387-21791-6_2. |
[18] |
M. Moakher, Means and averaging in the group of rotations, SIAM Journal on Matrix Analysis and Applications, 24 (2002), 1-16.doi: 10.1137/S0895479801383877. |
[19] |
P. Neff, Convexity and coercivity in nonlinear, anisotropic elasticity and some useful relations, Technical report, Technische Universität Darmstadt, 2008. available at https://www.uni-due.de/ hm0014/Download_files/cism_convexity08.pdf. |
[20] |
P. Neff, B. Eidel and R. J. Martin, Geometry of logarithmic strain measures in solid mechanics, Archive for Rational Mechanics and Analysis, 222 (2016), 507-572.doi: 10.1007/s00205-016-1007-x. |
[21] |
P. Neff, B. Eidel, F. Osterbrink and R. Martin, A Riemannian approach to strain measures in nonlinear elasticity, Comptes Rendus Mécanique, 342 (2014), 254-257.doi: 10.1016/j.crme.2013.12.005. |
[22] |
P. Neff, Y. Nakatsukasa and A. Fischle, A logarithmic minimization property of the unitary polar factor in the spectral and frobenius norms, SIAM Journal on Matrix Analysis and Applications, 35 (2014), 1132-1154.doi: 10.1137/130909949. |
[23] |
C. H. Taubes, Differential Geometry: Bundles, Connections, Metrics and Curvature, Oxford Graduate Texts in Mathematics, Oxford University Press, Oxford, 2011.doi: 10.1093/acprof:oso/9780199605880.001.0001. |
[24] |
B. Vandereycken, P.-A. Absil and S. Vandewalle, A Riemannian geometry with complete geodesics for the set of positive semidefinite matrices of fixed rank, IMA Journal of Numerical Analysis, 33 (2013), 481-514.doi: 10.1093/imanum/drs006. |