September  2016, 8(3): 323-357. doi: 10.3934/jgm.2016010

Minimal geodesics on GL(n) for left-invariant, right-O(n)-invariant Riemannian metrics

1. 

Lehrstuhl für Nichtlineare Analysis und Modellierung, Fakultät für Mathematik, Universität Duisburg-Essen, Thea-Leymann Str. 9, 45127 Essen, Germany

2. 

Head of Lehrstuhl für Nichtlineare Analysis und Modellierung, Fakultät für Mathematik, Universität Duisburg-Essen, Thea-Leymann Str. 9, 45127 Essen, Germany

Received  October 2014 Revised  February 2016 Published  September 2016

We provide an easy approach to the geodesic distance on the general linear group $GL(n)$ for left-invariant Riemannian metrics which are also right-$O(n)$-invariant. The parameterization of geodesic curves and the global existence of length minimizing geodesics are deduced using simple methods based on the calculus of variations and classical analysis only. The geodesic distance is discussed for some special cases and applications towards the theory of nonlinear elasticity are indicated.
Citation: Robert J. Martin, Patrizio Neff. Minimal geodesics on GL(n) for left-invariant, right-O(n)-invariant Riemannian metrics. Journal of Geometric Mechanics, 2016, 8 (3) : 323-357. doi: 10.3934/jgm.2016010
References:
[1]

E. Andruchow, G. Larotonda, L. Recht and A. Varela, The left invariant metric in the general linear group,, Journal of Geometry and Physics, 86 (2014), 241.  doi: 10.1016/j.geomphys.2014.08.009.  Google Scholar

[2]

D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas (Second Edition),, Princeton reference, (2009).  doi: 10.1515/9781400833344.  Google Scholar

[3]

A. M. Bloch, P. E. Crouch, N. Nordkvist and A. K. Sanyal, Embedded geodesic problems and optimal control for matrix Lie groups,, Journal of Geometric Mechanics, 3 (2011), 197.  doi: 10.3934/jgm.2011.3.197.  Google Scholar

[4]

P. G. Ciarlet, Three-Dimensional Elasticity,, Number 1 in Studies in Mathematics and its Applications, (1988).   Google Scholar

[5]

C. De Boor, A naive proof of the representation theorem for isotropic, linear asymmetric stress-strain relations,, Journal of Elasticity, 15 (1985), 225.  doi: 10.1007/BF00041995.  Google Scholar

[6]

M. P. do Carmo, Riemannian Geometry,, Birkhäuser Basel, (1992).  doi: 10.1007/978-1-4757-2201-7.  Google Scholar

[7]

J.-H. Eschenburg and J. Jost, Differentialgeometrie und Minimalflächen,, Springer, (2007).   Google Scholar

[8]

S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry,, Springer, (1990).  doi: 10.1007/978-3-642-97242-3.  Google Scholar

[9]

H. Hencky, Welche Umstände bedingen die Verfestigung bei der bildsamen Verformung von festen isotropen Körpern?,, Zeitschrift für Physik, 55 (1929), 145.   Google Scholar

[10]

N. J. Higham, Functions of Matrices: Theory and Computation,, Society for Industrial and Applied Mathematics, (2008).  doi: 10.1137/1.9780898717778.  Google Scholar

[11]

J. Jost, Riemannian Geometry and Geometric Analysis (2nd ed.),, Springer, (1998).  doi: 10.1007/978-3-662-22385-7.  Google Scholar

[12]

K. Königsberger, Analysis 1,, Analysis, (2004).   Google Scholar

[13]

J. Lankeit, P. Neff and Y. Nakatsukasa, The minimization of matrix logarithms: On a fundamental property of the unitary polar factor,, Linear Algebra and its Applications, 449 (2014), 28.  doi: 10.1016/j.laa.2014.02.012.  Google Scholar

[14]

S. Lee, M. Choi, H. Kim and F. C. Park, Geometric direct search algorithms for image registration,, IEEE Transactions on Image Processing, 16 (2007), 2215.  doi: 10.1109/TIP.2007.901809.  Google Scholar

[15]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, volume 17., Springer, (1999).  doi: 10.1007/978-0-387-21792-5.  Google Scholar

[16]

R. J. Martin and P. Neff, The GL(n)-geodesic distance on $SO(n)$,, in preparation, (2016).   Google Scholar

[17]

A. Mielke, Finite elastoplasticity, Lie groups and geodesics on $SL(d)$,, in Geometry, (2002), 61.  doi: 10.1007/0-387-21791-6_2.  Google Scholar

[18]

M. Moakher, Means and averaging in the group of rotations,, SIAM Journal on Matrix Analysis and Applications, 24 (2002), 1.  doi: 10.1137/S0895479801383877.  Google Scholar

[19]

P. Neff, Convexity and coercivity in nonlinear, anisotropic elasticity and some useful relations,, Technical report, (2008).   Google Scholar

[20]

P. Neff, B. Eidel and R. J. Martin, Geometry of logarithmic strain measures in solid mechanics,, Archive for Rational Mechanics and Analysis, 222 (2016), 507.  doi: 10.1007/s00205-016-1007-x.  Google Scholar

[21]

P. Neff, B. Eidel, F. Osterbrink and R. Martin, A Riemannian approach to strain measures in nonlinear elasticity,, Comptes Rendus Mécanique, 342 (2014), 254.  doi: 10.1016/j.crme.2013.12.005.  Google Scholar

[22]

P. Neff, Y. Nakatsukasa and A. Fischle, A logarithmic minimization property of the unitary polar factor in the spectral and frobenius norms,, SIAM Journal on Matrix Analysis and Applications, 35 (2014), 1132.  doi: 10.1137/130909949.  Google Scholar

[23]

C. H. Taubes, Differential Geometry: Bundles, Connections, Metrics and Curvature,, Oxford Graduate Texts in Mathematics, (2011).  doi: 10.1093/acprof:oso/9780199605880.001.0001.  Google Scholar

[24]

B. Vandereycken, P.-A. Absil and S. Vandewalle, A Riemannian geometry with complete geodesics for the set of positive semidefinite matrices of fixed rank,, IMA Journal of Numerical Analysis, 33 (2013), 481.  doi: 10.1093/imanum/drs006.  Google Scholar

show all references

References:
[1]

E. Andruchow, G. Larotonda, L. Recht and A. Varela, The left invariant metric in the general linear group,, Journal of Geometry and Physics, 86 (2014), 241.  doi: 10.1016/j.geomphys.2014.08.009.  Google Scholar

[2]

D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas (Second Edition),, Princeton reference, (2009).  doi: 10.1515/9781400833344.  Google Scholar

[3]

A. M. Bloch, P. E. Crouch, N. Nordkvist and A. K. Sanyal, Embedded geodesic problems and optimal control for matrix Lie groups,, Journal of Geometric Mechanics, 3 (2011), 197.  doi: 10.3934/jgm.2011.3.197.  Google Scholar

[4]

P. G. Ciarlet, Three-Dimensional Elasticity,, Number 1 in Studies in Mathematics and its Applications, (1988).   Google Scholar

[5]

C. De Boor, A naive proof of the representation theorem for isotropic, linear asymmetric stress-strain relations,, Journal of Elasticity, 15 (1985), 225.  doi: 10.1007/BF00041995.  Google Scholar

[6]

M. P. do Carmo, Riemannian Geometry,, Birkhäuser Basel, (1992).  doi: 10.1007/978-1-4757-2201-7.  Google Scholar

[7]

J.-H. Eschenburg and J. Jost, Differentialgeometrie und Minimalflächen,, Springer, (2007).   Google Scholar

[8]

S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry,, Springer, (1990).  doi: 10.1007/978-3-642-97242-3.  Google Scholar

[9]

H. Hencky, Welche Umstände bedingen die Verfestigung bei der bildsamen Verformung von festen isotropen Körpern?,, Zeitschrift für Physik, 55 (1929), 145.   Google Scholar

[10]

N. J. Higham, Functions of Matrices: Theory and Computation,, Society for Industrial and Applied Mathematics, (2008).  doi: 10.1137/1.9780898717778.  Google Scholar

[11]

J. Jost, Riemannian Geometry and Geometric Analysis (2nd ed.),, Springer, (1998).  doi: 10.1007/978-3-662-22385-7.  Google Scholar

[12]

K. Königsberger, Analysis 1,, Analysis, (2004).   Google Scholar

[13]

J. Lankeit, P. Neff and Y. Nakatsukasa, The minimization of matrix logarithms: On a fundamental property of the unitary polar factor,, Linear Algebra and its Applications, 449 (2014), 28.  doi: 10.1016/j.laa.2014.02.012.  Google Scholar

[14]

S. Lee, M. Choi, H. Kim and F. C. Park, Geometric direct search algorithms for image registration,, IEEE Transactions on Image Processing, 16 (2007), 2215.  doi: 10.1109/TIP.2007.901809.  Google Scholar

[15]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, volume 17., Springer, (1999).  doi: 10.1007/978-0-387-21792-5.  Google Scholar

[16]

R. J. Martin and P. Neff, The GL(n)-geodesic distance on $SO(n)$,, in preparation, (2016).   Google Scholar

[17]

A. Mielke, Finite elastoplasticity, Lie groups and geodesics on $SL(d)$,, in Geometry, (2002), 61.  doi: 10.1007/0-387-21791-6_2.  Google Scholar

[18]

M. Moakher, Means and averaging in the group of rotations,, SIAM Journal on Matrix Analysis and Applications, 24 (2002), 1.  doi: 10.1137/S0895479801383877.  Google Scholar

[19]

P. Neff, Convexity and coercivity in nonlinear, anisotropic elasticity and some useful relations,, Technical report, (2008).   Google Scholar

[20]

P. Neff, B. Eidel and R. J. Martin, Geometry of logarithmic strain measures in solid mechanics,, Archive for Rational Mechanics and Analysis, 222 (2016), 507.  doi: 10.1007/s00205-016-1007-x.  Google Scholar

[21]

P. Neff, B. Eidel, F. Osterbrink and R. Martin, A Riemannian approach to strain measures in nonlinear elasticity,, Comptes Rendus Mécanique, 342 (2014), 254.  doi: 10.1016/j.crme.2013.12.005.  Google Scholar

[22]

P. Neff, Y. Nakatsukasa and A. Fischle, A logarithmic minimization property of the unitary polar factor in the spectral and frobenius norms,, SIAM Journal on Matrix Analysis and Applications, 35 (2014), 1132.  doi: 10.1137/130909949.  Google Scholar

[23]

C. H. Taubes, Differential Geometry: Bundles, Connections, Metrics and Curvature,, Oxford Graduate Texts in Mathematics, (2011).  doi: 10.1093/acprof:oso/9780199605880.001.0001.  Google Scholar

[24]

B. Vandereycken, P.-A. Absil and S. Vandewalle, A Riemannian geometry with complete geodesics for the set of positive semidefinite matrices of fixed rank,, IMA Journal of Numerical Analysis, 33 (2013), 481.  doi: 10.1093/imanum/drs006.  Google Scholar

[1]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[4]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[5]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[6]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[7]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[8]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]