September  2016, 8(3): 359-374. doi: 10.3934/jgm.2016011

An approximation theorem in classical mechanics

1. 

Department of Mathematics, Wilfrid Laurier University, 75 University Ave West, Waterloo, ON, N2L 3C5

Received  July 2015 Revised  April 2016 Published  September 2016

A theorem by K. Meyer and D. Schmidt says that The reduced three-body problem in two or three dimensions with one small mass is approximately the product of the restricted problem and a harmonic oscillator [7]. This theorem was used to prove dynamical continuation results from the classical restricted circular three-body problem to the three-body problem with one small mass.
    We state and prove a similar theorem applicable to a larger class of mechanical systems. We present applications to spatial $(N+1)$-body systems with one small mass and gravitationally coupled systems formed by a rigid body and a small point mass.
Citation: Cristina Stoica. An approximation theorem in classical mechanics. Journal of Geometric Mechanics, 2016, 8 (3) : 359-374. doi: 10.3934/jgm.2016011
References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, $2^{nd}$ edition. With the assistance of T. Ratiu and R. Cushman, (1978).   Google Scholar

[2]

D. D. Holm, T. Schmah and C. Stoica, Geometry, Symmetry and Mechanics: From Finite to Infinite-dimensions,, Oxford Texts in Applied and Engineering Mathematics, (2009).   Google Scholar

[3]

J. E. Marsden, Lectures on Mechanics,, London Math. Soc. Lecture Note Ser., (1992).  doi: 10.1017/CBO9780511624001.  Google Scholar

[4]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry. A basic exposition of Classical Mechanical Systems,, Texts in Applied Mathematics, (1994).  doi: 10.1007/978-1-4612-2682-6.  Google Scholar

[5]

K. Meyer, G. Hall and D. Offin, Introduction to Hamiltonian Systems and the N-body Problem,, Applied Mathematical Sciences, (2009).   Google Scholar

[6]

K. Meyer, Periodic Solutions of the N-Body Problem,, Lecture Notes in Mathematics, (1719).  doi: 10.1007/BFb0094677.  Google Scholar

[7]

K. Meyer and D. Schmidt, From the restricted to the full three-body problem,, Transactions AMS, 352 (2000), 2283.  doi: 10.1090/S0002-9947-00-02542-3.  Google Scholar

[8]

G. W. Patrick, Relative Equilibria of Hamiltonian Systems with Symmetry: Linearization, Smoothness, and Drift,, J. Nonlinear Science, 5 (1995), 373.  doi: 10.1007/BF01212907.  Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, $2^{nd}$ edition. With the assistance of T. Ratiu and R. Cushman, (1978).   Google Scholar

[2]

D. D. Holm, T. Schmah and C. Stoica, Geometry, Symmetry and Mechanics: From Finite to Infinite-dimensions,, Oxford Texts in Applied and Engineering Mathematics, (2009).   Google Scholar

[3]

J. E. Marsden, Lectures on Mechanics,, London Math. Soc. Lecture Note Ser., (1992).  doi: 10.1017/CBO9780511624001.  Google Scholar

[4]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry. A basic exposition of Classical Mechanical Systems,, Texts in Applied Mathematics, (1994).  doi: 10.1007/978-1-4612-2682-6.  Google Scholar

[5]

K. Meyer, G. Hall and D. Offin, Introduction to Hamiltonian Systems and the N-body Problem,, Applied Mathematical Sciences, (2009).   Google Scholar

[6]

K. Meyer, Periodic Solutions of the N-Body Problem,, Lecture Notes in Mathematics, (1719).  doi: 10.1007/BFb0094677.  Google Scholar

[7]

K. Meyer and D. Schmidt, From the restricted to the full three-body problem,, Transactions AMS, 352 (2000), 2283.  doi: 10.1090/S0002-9947-00-02542-3.  Google Scholar

[8]

G. W. Patrick, Relative Equilibria of Hamiltonian Systems with Symmetry: Linearization, Smoothness, and Drift,, J. Nonlinear Science, 5 (1995), 373.  doi: 10.1007/BF01212907.  Google Scholar

[1]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[2]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

[3]

Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2020124

[4]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[5]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[6]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[7]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[8]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[9]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[10]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[11]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[12]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[13]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[14]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[15]

Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020362

[16]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[17]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[18]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[19]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[20]

François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]