# American Institute of Mathematical Sciences

September  2016, 8(3): 359-374. doi: 10.3934/jgm.2016011

## An approximation theorem in classical mechanics

 1 Department of Mathematics, Wilfrid Laurier University, 75 University Ave West, Waterloo, ON, N2L 3C5

Received  July 2015 Revised  April 2016 Published  September 2016

A theorem by K. Meyer and D. Schmidt says that The reduced three-body problem in two or three dimensions with one small mass is approximately the product of the restricted problem and a harmonic oscillator [7]. This theorem was used to prove dynamical continuation results from the classical restricted circular three-body problem to the three-body problem with one small mass.
We state and prove a similar theorem applicable to a larger class of mechanical systems. We present applications to spatial $(N+1)$-body systems with one small mass and gravitationally coupled systems formed by a rigid body and a small point mass.
Citation: Cristina Stoica. An approximation theorem in classical mechanics. Journal of Geometric Mechanics, 2016, 8 (3) : 359-374. doi: 10.3934/jgm.2016011
##### References:
 [1] R. Abraham and J. E. Marsden, Foundations of Mechanics, $2^{nd}$ edition. With the assistance of T. Ratiu and R. Cushman, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. [2] D. D. Holm, T. Schmah and C. Stoica, Geometry, Symmetry and Mechanics: From Finite to Infinite-dimensions, Oxford Texts in Applied and Engineering Mathematics, 12, Oxford University Press, 2009. [3] J. E. Marsden, Lectures on Mechanics, London Math. Soc. Lecture Note Ser., 174, Cambridge University Press, 1992. doi: 10.1017/CBO9780511624001. [4] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry. A basic exposition of Classical Mechanical Systems, Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-2682-6. [5] K. Meyer, G. Hall and D. Offin, Introduction to Hamiltonian Systems and the N-body Problem, Applied Mathematical Sciences, 90, $2^{nd}$ edition, Springer-Verlag, New York, 2009. [6] K. Meyer, Periodic Solutions of the N-Body Problem, Lecture Notes in Mathematics, 1719, Springer-Verlag, New York, 1999. doi: 10.1007/BFb0094677. [7] K. Meyer and D. Schmidt, From the restricted to the full three-body problem, Transactions AMS, 352 (2000), 2283-2299. doi: 10.1090/S0002-9947-00-02542-3. [8] G. W. Patrick, Relative Equilibria of Hamiltonian Systems with Symmetry: Linearization, Smoothness, and Drift, J. Nonlinear Science, 5 (1995), 373-418. doi: 10.1007/BF01212907.

show all references

##### References:
 [1] R. Abraham and J. E. Marsden, Foundations of Mechanics, $2^{nd}$ edition. With the assistance of T. Ratiu and R. Cushman, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. [2] D. D. Holm, T. Schmah and C. Stoica, Geometry, Symmetry and Mechanics: From Finite to Infinite-dimensions, Oxford Texts in Applied and Engineering Mathematics, 12, Oxford University Press, 2009. [3] J. E. Marsden, Lectures on Mechanics, London Math. Soc. Lecture Note Ser., 174, Cambridge University Press, 1992. doi: 10.1017/CBO9780511624001. [4] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry. A basic exposition of Classical Mechanical Systems, Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-2682-6. [5] K. Meyer, G. Hall and D. Offin, Introduction to Hamiltonian Systems and the N-body Problem, Applied Mathematical Sciences, 90, $2^{nd}$ edition, Springer-Verlag, New York, 2009. [6] K. Meyer, Periodic Solutions of the N-Body Problem, Lecture Notes in Mathematics, 1719, Springer-Verlag, New York, 1999. doi: 10.1007/BFb0094677. [7] K. Meyer and D. Schmidt, From the restricted to the full three-body problem, Transactions AMS, 352 (2000), 2283-2299. doi: 10.1090/S0002-9947-00-02542-3. [8] G. W. Patrick, Relative Equilibria of Hamiltonian Systems with Symmetry: Linearization, Smoothness, and Drift, J. Nonlinear Science, 5 (1995), 373-418. doi: 10.1007/BF01212907.
 [1] Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017 [2] Juan Carlos Marrero, D. Martín de Diego, Diana Sosa. Variational constrained mechanics on Lie affgebroids. Discrete and Continuous Dynamical Systems - S, 2010, 3 (1) : 105-128. doi: 10.3934/dcdss.2010.3.105 [3] Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014 [4] Henrique Bursztyn, Alejandro Cabrera. Symmetries and reduction of multiplicative 2-forms. Journal of Geometric Mechanics, 2012, 4 (2) : 111-127. doi: 10.3934/jgm.2012.4.111 [5] Florio M. Ciaglia, Fabio Di Cosmo, Alberto Ibort, Giuseppe Marmo, Luca Schiavone. Schwinger's picture of quantum mechanics: 2-groupoids and symmetries. Journal of Geometric Mechanics, 2021, 13 (3) : 333-354. doi: 10.3934/jgm.2021008 [6] Chaudry Masood Khalique, Muhammad Usman, Maria Luz Gandarais. Nonlinear differential equations: Lie symmetries, conservation laws and other approaches of solving. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : i-ii. doi: 10.3934/dcdss.2020415 [7] María Rosa, María de los Santos Bruzón, María de la Luz Gandarias. Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1331-1339. doi: 10.3934/dcdss.2015.8.1331 [8] Carsten Collon, Joachim Rudolph, Frank Woittennek. Invariant feedback design for control systems with lie symmetries - A kinematic car example. Conference Publications, 2011, 2011 (Special) : 312-321. doi: 10.3934/proc.2011.2011.312 [9] Wenqing Bao, Xianyi Wu, Xian Zhou. Optimal stopping problems with restricted stopping times. Journal of Industrial and Management Optimization, 2017, 13 (1) : 399-411. doi: 10.3934/jimo.2016023 [10] Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421 [11] David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353 [12] Gennadi Sardanashvily. Lagrangian dynamics of submanifolds. Relativistic mechanics. Journal of Geometric Mechanics, 2012, 4 (1) : 99-110. doi: 10.3934/jgm.2012.4.99 [13] Alain Miranville, Mazen Saad, Raafat Talhouk. Preface: Workshop in fluid mechanics and population dynamics. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : i-i. doi: 10.3934/dcdss.2014.7.2i [14] Håkon Hoel, Anders Szepessy. Classical Langevin dynamics derived from quantum mechanics. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 4001-4038. doi: 10.3934/dcdsb.2020135 [15] Samuel R. Kaplan, Ernesto A. Lacomba, Jaume Llibre. Symbolic dynamics of the elliptic rectilinear restricted 3--body problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 541-555. doi: 10.3934/dcdss.2008.1.541 [16] Piotr Gwiazda, Piotr Minakowski, Agnieszka Świerczewska-Gwiazda. On the anisotropic Orlicz spaces applied in the problems of continuum mechanics. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1291-1306. doi: 10.3934/dcdss.2013.6.1291 [17] María-Santos Bruzón, Elena Recio, Tamara-María Garrido, Rafael de la Rosa. Lie symmetries, conservation laws and exact solutions of a generalized quasilinear KdV equation with degenerate dispersion. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2691-2701. doi: 10.3934/dcdss.2020222 [18] Juan Belmonte-Beitia, Víctor M. Pérez-García, Vadym Vekslerchik, Pedro J. Torres. Lie symmetries, qualitative analysis and exact solutions of nonlinear Schrödinger equations with inhomogeneous nonlinearities. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 221-233. doi: 10.3934/dcdsb.2008.9.221 [19] Velimir Jurdjevic. Affine-quadratic problems on Lie groups. Mathematical Control and Related Fields, 2013, 3 (3) : 347-374. doi: 10.3934/mcrf.2013.3.347 [20] Feng Bao, Thomas Maier. Stochastic gradient descent algorithm for stochastic optimization in solving analytic continuation problems. Foundations of Data Science, 2020, 2 (1) : 1-17. doi: 10.3934/fods.2020001

2020 Impact Factor: 0.857