- Previous Article
- JGM Home
- This Issue
-
Next Article
Minimal geodesics on GL(n) for left-invariant, right-O(n)-invariant Riemannian metrics
An approximation theorem in classical mechanics
1. | Department of Mathematics, Wilfrid Laurier University, 75 University Ave West, Waterloo, ON, N2L 3C5 |
We state and prove a similar theorem applicable to a larger class of mechanical systems. We present applications to spatial $(N+1)$-body systems with one small mass and gravitationally coupled systems formed by a rigid body and a small point mass.
References:
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics, $2^{nd}$ edition. With the assistance of T. Ratiu and R. Cushman, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. |
[2] |
D. D. Holm, T. Schmah and C. Stoica, Geometry, Symmetry and Mechanics: From Finite to Infinite-dimensions, Oxford Texts in Applied and Engineering Mathematics, 12, Oxford University Press, 2009. |
[3] |
J. E. Marsden, Lectures on Mechanics, London Math. Soc. Lecture Note Ser., 174, Cambridge University Press, 1992.
doi: 10.1017/CBO9780511624001. |
[4] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry. A basic exposition of Classical Mechanical Systems, Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-2682-6. |
[5] |
K. Meyer, G. Hall and D. Offin, Introduction to Hamiltonian Systems and the N-body Problem, Applied Mathematical Sciences, 90, $2^{nd}$ edition, Springer-Verlag, New York, 2009. |
[6] |
K. Meyer, Periodic Solutions of the N-Body Problem, Lecture Notes in Mathematics, 1719, Springer-Verlag, New York, 1999.
doi: 10.1007/BFb0094677. |
[7] |
K. Meyer and D. Schmidt, From the restricted to the full three-body problem, Transactions AMS, 352 (2000), 2283-2299.
doi: 10.1090/S0002-9947-00-02542-3. |
[8] |
G. W. Patrick, Relative Equilibria of Hamiltonian Systems with Symmetry: Linearization, Smoothness, and Drift, J. Nonlinear Science, 5 (1995), 373-418.
doi: 10.1007/BF01212907. |
show all references
References:
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics, $2^{nd}$ edition. With the assistance of T. Ratiu and R. Cushman, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. |
[2] |
D. D. Holm, T. Schmah and C. Stoica, Geometry, Symmetry and Mechanics: From Finite to Infinite-dimensions, Oxford Texts in Applied and Engineering Mathematics, 12, Oxford University Press, 2009. |
[3] |
J. E. Marsden, Lectures on Mechanics, London Math. Soc. Lecture Note Ser., 174, Cambridge University Press, 1992.
doi: 10.1017/CBO9780511624001. |
[4] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry. A basic exposition of Classical Mechanical Systems, Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-2682-6. |
[5] |
K. Meyer, G. Hall and D. Offin, Introduction to Hamiltonian Systems and the N-body Problem, Applied Mathematical Sciences, 90, $2^{nd}$ edition, Springer-Verlag, New York, 2009. |
[6] |
K. Meyer, Periodic Solutions of the N-Body Problem, Lecture Notes in Mathematics, 1719, Springer-Verlag, New York, 1999.
doi: 10.1007/BFb0094677. |
[7] |
K. Meyer and D. Schmidt, From the restricted to the full three-body problem, Transactions AMS, 352 (2000), 2283-2299.
doi: 10.1090/S0002-9947-00-02542-3. |
[8] |
G. W. Patrick, Relative Equilibria of Hamiltonian Systems with Symmetry: Linearization, Smoothness, and Drift, J. Nonlinear Science, 5 (1995), 373-418.
doi: 10.1007/BF01212907. |
[1] |
Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017 |
[2] |
Juan Carlos Marrero, D. Martín de Diego, Diana Sosa. Variational constrained mechanics on Lie affgebroids. Discrete and Continuous Dynamical Systems - S, 2010, 3 (1) : 105-128. doi: 10.3934/dcdss.2010.3.105 |
[3] |
Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014 |
[4] |
Henrique Bursztyn, Alejandro Cabrera. Symmetries and reduction of multiplicative 2-forms. Journal of Geometric Mechanics, 2012, 4 (2) : 111-127. doi: 10.3934/jgm.2012.4.111 |
[5] |
Florio M. Ciaglia, Fabio Di Cosmo, Alberto Ibort, Giuseppe Marmo, Luca Schiavone. Schwinger's picture of quantum mechanics: 2-groupoids and symmetries. Journal of Geometric Mechanics, 2021, 13 (3) : 333-354. doi: 10.3934/jgm.2021008 |
[6] |
Chaudry Masood Khalique, Muhammad Usman, Maria Luz Gandarais. Nonlinear differential equations: Lie symmetries, conservation laws and other approaches of solving. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : i-ii. doi: 10.3934/dcdss.2020415 |
[7] |
María Rosa, María de los Santos Bruzón, María de la Luz Gandarias. Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1331-1339. doi: 10.3934/dcdss.2015.8.1331 |
[8] |
Carsten Collon, Joachim Rudolph, Frank Woittennek. Invariant feedback design for control systems with lie symmetries - A kinematic car example. Conference Publications, 2011, 2011 (Special) : 312-321. doi: 10.3934/proc.2011.2011.312 |
[9] |
Wenqing Bao, Xianyi Wu, Xian Zhou. Optimal stopping problems with restricted stopping times. Journal of Industrial and Management Optimization, 2017, 13 (1) : 399-411. doi: 10.3934/jimo.2016023 |
[10] |
Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421 |
[11] |
David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353 |
[12] |
Gennadi Sardanashvily. Lagrangian dynamics of submanifolds. Relativistic mechanics. Journal of Geometric Mechanics, 2012, 4 (1) : 99-110. doi: 10.3934/jgm.2012.4.99 |
[13] |
Alain Miranville, Mazen Saad, Raafat Talhouk. Preface: Workshop in fluid mechanics and population dynamics. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : i-i. doi: 10.3934/dcdss.2014.7.2i |
[14] |
Håkon Hoel, Anders Szepessy. Classical Langevin dynamics derived from quantum mechanics. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 4001-4038. doi: 10.3934/dcdsb.2020135 |
[15] |
Samuel R. Kaplan, Ernesto A. Lacomba, Jaume Llibre. Symbolic dynamics of the elliptic rectilinear restricted 3--body problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 541-555. doi: 10.3934/dcdss.2008.1.541 |
[16] |
Piotr Gwiazda, Piotr Minakowski, Agnieszka Świerczewska-Gwiazda. On the anisotropic Orlicz spaces applied in the problems of continuum mechanics. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1291-1306. doi: 10.3934/dcdss.2013.6.1291 |
[17] |
María-Santos Bruzón, Elena Recio, Tamara-María Garrido, Rafael de la Rosa. Lie symmetries, conservation laws and exact solutions of a generalized quasilinear KdV equation with degenerate dispersion. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2691-2701. doi: 10.3934/dcdss.2020222 |
[18] |
Juan Belmonte-Beitia, Víctor M. Pérez-García, Vadym Vekslerchik, Pedro J. Torres. Lie symmetries, qualitative analysis and exact solutions of nonlinear Schrödinger equations with inhomogeneous nonlinearities. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 221-233. doi: 10.3934/dcdsb.2008.9.221 |
[19] |
Velimir Jurdjevic. Affine-quadratic problems on Lie groups. Mathematical Control and Related Fields, 2013, 3 (3) : 347-374. doi: 10.3934/mcrf.2013.3.347 |
[20] |
Feng Bao, Thomas Maier. Stochastic gradient descent algorithm for stochastic optimization in solving analytic continuation problems. Foundations of Data Science, 2020, 2 (1) : 1-17. doi: 10.3934/fods.2020001 |
2020 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]