December  2016, 8(4): 375-389. doi: 10.3934/jgm.2016012

No monodromy in the champagne bottle, or singularities of a superintegrable system

1. 

Department of Mathematics, University of Calgary, Calgary, AB, T2N 1N4

2. 

Università di Padova, Dipartimento di Matematica Pura e Applicata, Via Trieste 63, 35121 Padova

Received  February 2015 Revised  August 2016 Published  November 2016

The three-dimensional champagne bottle system contains no mondromy, despite being entirely composed of invariant two-dimensional champagne bottle systems, each of which posesses nontrivial monodromy. We explain where the monodromy went in the three-dimensional system, or perhaps, where it did come from in the two-dimensional system, by regarding the three-dimensional system not as completely integrable, but as superintegrable (or non-commutatively integrable), and explaining the role of the singularities of its isotropic-coisotropic pair of foliations.
Citation: Larry M. Bates, Francesco Fassò. No monodromy in the champagne bottle, or singularities of a superintegrable system. Journal of Geometric Mechanics, 2016, 8 (4) : 375-389. doi: 10.3934/jgm.2016012
References:
[1]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics,, $2^{nd}$ edition, 60 (1989).  doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[2]

L. Bates, Monodromy in the champagne bottle,, Journal of Applied Mathematics and Physics (ZAMP), 42 (1991), 837.  doi: 10.1007/BF00944566.  Google Scholar

[3]

R. Cushman and L. Bates, Global Aspects of Classical Integrable Systems,, $2^{nd}$ edition, (2015).  doi: 10.1007/978-3-0348-0918-4.  Google Scholar

[4]

P. Dazord and T. Delzant, Le probleme general des variables actions-angles,, Journal of Differential Geometry, 26 (1987), 223.   Google Scholar

[5]

J. Duistermaat, On global action-angle coordinates,, Communications on Pure and Applied Mathematics, 33 (1980), 687.  doi: 10.1002/cpa.3160330602.  Google Scholar

[6]

H. Dullin and H. Hanßmann, The degenerate C. Neumann system I: symmetry reduction and convexity,, Central European Journal of Mathematics, 10 (2012), 1627.  doi: 10.2478/s11533-012-0085-8.  Google Scholar

[7]

F. Fassò, Superintegrable Hamiltonian systems: Geometry and perturbations,, Acta Applicandae Mathematicae, 87 (2005), 93.  doi: 10.1007/s10440-005-1139-8.  Google Scholar

[8]

J. Milnor and J. Stasheff, Characteristic Classes,, Annals of mathematics studies 76, 76 (1974).   Google Scholar

[9]

A. Mischenko and A. Fomenko, Generalized Liouville method of integration of Hamiltonian systems,, Funct. Anal. Appl, 12 (1978), 113.   Google Scholar

[10]

N. N. Nekhoroshev, Action-angle variables and their generalizations,, Trans. Moskow Math. Soc., 26 (1972), 181.   Google Scholar

[11]

M. Winnewisser, B. P. Winnewisser, F. C. De Lucia, I. R. Medvedev, S. C. Ross and L. M. Bates, The hidden kernel of molecular quasi-linearity: Quantum monodromy,, Journal of Molecular Structure, 798 (2006), 1.  doi: 10.1016/j.molstruc.2006.06.036.  Google Scholar

show all references

References:
[1]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics,, $2^{nd}$ edition, 60 (1989).  doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[2]

L. Bates, Monodromy in the champagne bottle,, Journal of Applied Mathematics and Physics (ZAMP), 42 (1991), 837.  doi: 10.1007/BF00944566.  Google Scholar

[3]

R. Cushman and L. Bates, Global Aspects of Classical Integrable Systems,, $2^{nd}$ edition, (2015).  doi: 10.1007/978-3-0348-0918-4.  Google Scholar

[4]

P. Dazord and T. Delzant, Le probleme general des variables actions-angles,, Journal of Differential Geometry, 26 (1987), 223.   Google Scholar

[5]

J. Duistermaat, On global action-angle coordinates,, Communications on Pure and Applied Mathematics, 33 (1980), 687.  doi: 10.1002/cpa.3160330602.  Google Scholar

[6]

H. Dullin and H. Hanßmann, The degenerate C. Neumann system I: symmetry reduction and convexity,, Central European Journal of Mathematics, 10 (2012), 1627.  doi: 10.2478/s11533-012-0085-8.  Google Scholar

[7]

F. Fassò, Superintegrable Hamiltonian systems: Geometry and perturbations,, Acta Applicandae Mathematicae, 87 (2005), 93.  doi: 10.1007/s10440-005-1139-8.  Google Scholar

[8]

J. Milnor and J. Stasheff, Characteristic Classes,, Annals of mathematics studies 76, 76 (1974).   Google Scholar

[9]

A. Mischenko and A. Fomenko, Generalized Liouville method of integration of Hamiltonian systems,, Funct. Anal. Appl, 12 (1978), 113.   Google Scholar

[10]

N. N. Nekhoroshev, Action-angle variables and their generalizations,, Trans. Moskow Math. Soc., 26 (1972), 181.   Google Scholar

[11]

M. Winnewisser, B. P. Winnewisser, F. C. De Lucia, I. R. Medvedev, S. C. Ross and L. M. Bates, The hidden kernel of molecular quasi-linearity: Quantum monodromy,, Journal of Molecular Structure, 798 (2006), 1.  doi: 10.1016/j.molstruc.2006.06.036.  Google Scholar

[1]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[2]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[3]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[4]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[5]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[6]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[7]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[8]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[9]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[10]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[11]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[12]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[13]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[14]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[15]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]