# American Institute of Mathematical Sciences

December  2016, 8(4): 375-389. doi: 10.3934/jgm.2016012

## No monodromy in the champagne bottle, or singularities of a superintegrable system

 1 Department of Mathematics, University of Calgary, Calgary, AB, T2N 1N4 2 Università di Padova, Dipartimento di Matematica Pura e Applicata, Via Trieste 63, 35121 Padova

Received  February 2015 Revised  August 2016 Published  November 2016

The three-dimensional champagne bottle system contains no mondromy, despite being entirely composed of invariant two-dimensional champagne bottle systems, each of which posesses nontrivial monodromy. We explain where the monodromy went in the three-dimensional system, or perhaps, where it did come from in the two-dimensional system, by regarding the three-dimensional system not as completely integrable, but as superintegrable (or non-commutatively integrable), and explaining the role of the singularities of its isotropic-coisotropic pair of foliations.
Citation: Larry M. Bates, Francesco Fassò. No monodromy in the champagne bottle, or singularities of a superintegrable system. Journal of Geometric Mechanics, 2016, 8 (4) : 375-389. doi: 10.3934/jgm.2016012
##### References:
 [1] V. I. Arnol'd, Mathematical Methods of Classical Mechanics, $2^{nd}$ edition, Graduate Text in Mathematics, 60, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1. [2] L. Bates, Monodromy in the champagne bottle, Journal of Applied Mathematics and Physics (ZAMP), 42 (1991), 837-847. doi: 10.1007/BF00944566. [3] R. Cushman and L. Bates, Global Aspects of Classical Integrable Systems, $2^{nd}$ edition, Birkhäuser, Basel, 2015. doi: 10.1007/978-3-0348-0918-4. [4] P. Dazord and T. Delzant, Le probleme general des variables actions-angles, Journal of Differential Geometry, 26 (1987), 223-251. [5] J. Duistermaat, On global action-angle coordinates, Communications on Pure and Applied Mathematics, 33 (1980), 687-706. doi: 10.1002/cpa.3160330602. [6] H. Dullin and H. Hanßmann, The degenerate C. Neumann system I: symmetry reduction and convexity, Central European Journal of Mathematics, 10 (2012), 1627-1654. doi: 10.2478/s11533-012-0085-8. [7] F. Fassò, Superintegrable Hamiltonian systems: Geometry and perturbations, Acta Applicandae Mathematicae, 87 (2005), 93-121. doi: 10.1007/s10440-005-1139-8. [8] J. Milnor and J. Stasheff, Characteristic Classes, Annals of mathematics studies 76, Princeton University Press, 1974. [9] A. Mischenko and A. Fomenko, Generalized Liouville method of integration of Hamiltonian systems, Funct. Anal. Appl, 12 (1978), 113-121. [10] N. N. Nekhoroshev, Action-angle variables and their generalizations, Trans. Moskow Math. Soc., 26 (1972), 181-198. [11] M. Winnewisser, B. P. Winnewisser, F. C. De Lucia, I. R. Medvedev, S. C. Ross and L. M. Bates, The hidden kernel of molecular quasi-linearity: Quantum monodromy, Journal of Molecular Structure, 798 (2006), 1-26. doi: 10.1016/j.molstruc.2006.06.036.

show all references

##### References:
 [1] V. I. Arnol'd, Mathematical Methods of Classical Mechanics, $2^{nd}$ edition, Graduate Text in Mathematics, 60, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1. [2] L. Bates, Monodromy in the champagne bottle, Journal of Applied Mathematics and Physics (ZAMP), 42 (1991), 837-847. doi: 10.1007/BF00944566. [3] R. Cushman and L. Bates, Global Aspects of Classical Integrable Systems, $2^{nd}$ edition, Birkhäuser, Basel, 2015. doi: 10.1007/978-3-0348-0918-4. [4] P. Dazord and T. Delzant, Le probleme general des variables actions-angles, Journal of Differential Geometry, 26 (1987), 223-251. [5] J. Duistermaat, On global action-angle coordinates, Communications on Pure and Applied Mathematics, 33 (1980), 687-706. doi: 10.1002/cpa.3160330602. [6] H. Dullin and H. Hanßmann, The degenerate C. Neumann system I: symmetry reduction and convexity, Central European Journal of Mathematics, 10 (2012), 1627-1654. doi: 10.2478/s11533-012-0085-8. [7] F. Fassò, Superintegrable Hamiltonian systems: Geometry and perturbations, Acta Applicandae Mathematicae, 87 (2005), 93-121. doi: 10.1007/s10440-005-1139-8. [8] J. Milnor and J. Stasheff, Characteristic Classes, Annals of mathematics studies 76, Princeton University Press, 1974. [9] A. Mischenko and A. Fomenko, Generalized Liouville method of integration of Hamiltonian systems, Funct. Anal. Appl, 12 (1978), 113-121. [10] N. N. Nekhoroshev, Action-angle variables and their generalizations, Trans. Moskow Math. Soc., 26 (1972), 181-198. [11] M. Winnewisser, B. P. Winnewisser, F. C. De Lucia, I. R. Medvedev, S. C. Ross and L. M. Bates, The hidden kernel of molecular quasi-linearity: Quantum monodromy, Journal of Molecular Structure, 798 (2006), 1-26. doi: 10.1016/j.molstruc.2006.06.036.
 [1] Mitsuru Shibayama. Non-integrability criterion for homogeneous Hamiltonian systems via blowing-up technique of singularities. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3707-3719. doi: 10.3934/dcds.2015.35.3707 [2] Jaume Llibre, Yuzhou Tian. Meromorphic integrability of the Hamiltonian systems with homogeneous potentials of degree -4. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021228 [3] Guillaume Duval, Andrzej J. Maciejewski. Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4589-4615. doi: 10.3934/dcds.2014.34.4589 [4] A. Ghose Choudhury, Partha Guha. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2465-2478. doi: 10.3934/dcdsb.2017126 [5] Jaume Llibre, Claudia Valls. On the analytic integrability of the Liénard analytic differential systems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 557-573. doi: 10.3934/dcdsb.2016.21.557 [6] Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441 [7] Jaume Llibre, Claudia Valls. Analytic integrability of a class of planar polynomial differential systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2657-2661. doi: 10.3934/dcdsb.2015.20.2657 [8] Antonio Algaba, Cristóbal García, Jaume Giné. Analytic integrability for some degenerate planar systems. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2797-2809. doi: 10.3934/cpaa.2013.12.2797 [9] Dung Le. Higher integrability for gradients of solutions to degenerate parabolic systems. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 597-608. doi: 10.3934/dcds.2010.26.597 [10] Božidar Jovanović, Vladimir Jovanović. Virtual billiards in pseudo–euclidean spaces: Discrete hamiltonian and contact integrability. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5163-5190. doi: 10.3934/dcds.2017224 [11] Shaoyun Shi, Wenlei Li. Non-integrability of generalized Yang-Mills Hamiltonian system. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1645-1655. doi: 10.3934/dcds.2013.33.1645 [12] Eduard Feireisl. Relative entropies in thermodynamics of complete fluid systems. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3059-3080. doi: 10.3934/dcds.2012.32.3059 [13] Primitivo B. Acosta-Humánez, Martha Alvarez-Ramírez, David Blázquez-Sanz, Joaquín Delgado. Non-integrability criterium for normal variational equations around an integrable subsystem and an example: The Wilberforce spring-pendulum. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 965-986. doi: 10.3934/dcds.2013.33.965 [14] Ernest Fontich, Pau Martín. Arnold diffusion in perturbations of analytic integrable Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 61-84. doi: 10.3934/dcds.2001.7.61 [15] Chiara Leone, Anna Verde, Giovanni Pisante. Higher integrability results for non smooth parabolic systems: The subquadratic case. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 177-190. doi: 10.3934/dcdsb.2009.11.177 [16] Wenlei Li, Shaoyun Shi. Weak-Painlevé property and integrability of general dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3667-3681. doi: 10.3934/dcds.2014.34.3667 [17] Kristian Moring, Christoph Scheven, Sebastian Schwarzacher, Thomas Singer. Global higher integrability of weak solutions of porous medium systems. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1697-1745. doi: 10.3934/cpaa.2020069 [18] Barbara Arcet, Valery G. Romanovski. Integrability and linearizability of symmetric three-dimensional quadratic systems. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022104 [19] Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 [20] Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481

2020 Impact Factor: 0.857