December  2016, 8(4): 375-389. doi: 10.3934/jgm.2016012

No monodromy in the champagne bottle, or singularities of a superintegrable system

1. 

Department of Mathematics, University of Calgary, Calgary, AB, T2N 1N4

2. 

Università di Padova, Dipartimento di Matematica Pura e Applicata, Via Trieste 63, 35121 Padova

Received  February 2015 Revised  August 2016 Published  November 2016

The three-dimensional champagne bottle system contains no mondromy, despite being entirely composed of invariant two-dimensional champagne bottle systems, each of which posesses nontrivial monodromy. We explain where the monodromy went in the three-dimensional system, or perhaps, where it did come from in the two-dimensional system, by regarding the three-dimensional system not as completely integrable, but as superintegrable (or non-commutatively integrable), and explaining the role of the singularities of its isotropic-coisotropic pair of foliations.
Citation: Larry M. Bates, Francesco Fassò. No monodromy in the champagne bottle, or singularities of a superintegrable system. Journal of Geometric Mechanics, 2016, 8 (4) : 375-389. doi: 10.3934/jgm.2016012
References:
[1]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics,, $2^{nd}$ edition, 60 (1989). doi: 10.1007/978-1-4757-2063-1. Google Scholar

[2]

L. Bates, Monodromy in the champagne bottle,, Journal of Applied Mathematics and Physics (ZAMP), 42 (1991), 837. doi: 10.1007/BF00944566. Google Scholar

[3]

R. Cushman and L. Bates, Global Aspects of Classical Integrable Systems,, $2^{nd}$ edition, (2015). doi: 10.1007/978-3-0348-0918-4. Google Scholar

[4]

P. Dazord and T. Delzant, Le probleme general des variables actions-angles,, Journal of Differential Geometry, 26 (1987), 223. Google Scholar

[5]

J. Duistermaat, On global action-angle coordinates,, Communications on Pure and Applied Mathematics, 33 (1980), 687. doi: 10.1002/cpa.3160330602. Google Scholar

[6]

H. Dullin and H. Hanßmann, The degenerate C. Neumann system I: symmetry reduction and convexity,, Central European Journal of Mathematics, 10 (2012), 1627. doi: 10.2478/s11533-012-0085-8. Google Scholar

[7]

F. Fassò, Superintegrable Hamiltonian systems: Geometry and perturbations,, Acta Applicandae Mathematicae, 87 (2005), 93. doi: 10.1007/s10440-005-1139-8. Google Scholar

[8]

J. Milnor and J. Stasheff, Characteristic Classes,, Annals of mathematics studies 76, 76 (1974). Google Scholar

[9]

A. Mischenko and A. Fomenko, Generalized Liouville method of integration of Hamiltonian systems,, Funct. Anal. Appl, 12 (1978), 113. Google Scholar

[10]

N. N. Nekhoroshev, Action-angle variables and their generalizations,, Trans. Moskow Math. Soc., 26 (1972), 181. Google Scholar

[11]

M. Winnewisser, B. P. Winnewisser, F. C. De Lucia, I. R. Medvedev, S. C. Ross and L. M. Bates, The hidden kernel of molecular quasi-linearity: Quantum monodromy,, Journal of Molecular Structure, 798 (2006), 1. doi: 10.1016/j.molstruc.2006.06.036. Google Scholar

show all references

References:
[1]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics,, $2^{nd}$ edition, 60 (1989). doi: 10.1007/978-1-4757-2063-1. Google Scholar

[2]

L. Bates, Monodromy in the champagne bottle,, Journal of Applied Mathematics and Physics (ZAMP), 42 (1991), 837. doi: 10.1007/BF00944566. Google Scholar

[3]

R. Cushman and L. Bates, Global Aspects of Classical Integrable Systems,, $2^{nd}$ edition, (2015). doi: 10.1007/978-3-0348-0918-4. Google Scholar

[4]

P. Dazord and T. Delzant, Le probleme general des variables actions-angles,, Journal of Differential Geometry, 26 (1987), 223. Google Scholar

[5]

J. Duistermaat, On global action-angle coordinates,, Communications on Pure and Applied Mathematics, 33 (1980), 687. doi: 10.1002/cpa.3160330602. Google Scholar

[6]

H. Dullin and H. Hanßmann, The degenerate C. Neumann system I: symmetry reduction and convexity,, Central European Journal of Mathematics, 10 (2012), 1627. doi: 10.2478/s11533-012-0085-8. Google Scholar

[7]

F. Fassò, Superintegrable Hamiltonian systems: Geometry and perturbations,, Acta Applicandae Mathematicae, 87 (2005), 93. doi: 10.1007/s10440-005-1139-8. Google Scholar

[8]

J. Milnor and J. Stasheff, Characteristic Classes,, Annals of mathematics studies 76, 76 (1974). Google Scholar

[9]

A. Mischenko and A. Fomenko, Generalized Liouville method of integration of Hamiltonian systems,, Funct. Anal. Appl, 12 (1978), 113. Google Scholar

[10]

N. N. Nekhoroshev, Action-angle variables and their generalizations,, Trans. Moskow Math. Soc., 26 (1972), 181. Google Scholar

[11]

M. Winnewisser, B. P. Winnewisser, F. C. De Lucia, I. R. Medvedev, S. C. Ross and L. M. Bates, The hidden kernel of molecular quasi-linearity: Quantum monodromy,, Journal of Molecular Structure, 798 (2006), 1. doi: 10.1016/j.molstruc.2006.06.036. Google Scholar

[1]

Mitsuru Shibayama. Non-integrability criterion for homogeneous Hamiltonian systems via blowing-up technique of singularities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3707-3719. doi: 10.3934/dcds.2015.35.3707

[2]

Guillaume Duval, Andrzej J. Maciejewski. Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4589-4615. doi: 10.3934/dcds.2014.34.4589

[3]

A. Ghose Choudhury, Partha Guha. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2465-2478. doi: 10.3934/dcdsb.2017126

[4]

Eduard Feireisl. Relative entropies in thermodynamics of complete fluid systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3059-3080. doi: 10.3934/dcds.2012.32.3059

[5]

Jaume Llibre, Claudia Valls. On the analytic integrability of the Liénard analytic differential systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 557-573. doi: 10.3934/dcdsb.2016.21.557

[6]

Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441

[7]

Dung Le. Higher integrability for gradients of solutions to degenerate parabolic systems. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 597-608. doi: 10.3934/dcds.2010.26.597

[8]

Jaume Llibre, Claudia Valls. Analytic integrability of a class of planar polynomial differential systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2657-2661. doi: 10.3934/dcdsb.2015.20.2657

[9]

Antonio Algaba, Cristóbal García, Jaume Giné. Analytic integrability for some degenerate planar systems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2797-2809. doi: 10.3934/cpaa.2013.12.2797

[10]

Božidar Jovanović, Vladimir Jovanović. Virtual billiards in pseudo–euclidean spaces: Discrete hamiltonian and contact integrability. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5163-5190. doi: 10.3934/dcds.2017224

[11]

Shaoyun Shi, Wenlei Li. Non-integrability of generalized Yang-Mills Hamiltonian system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1645-1655. doi: 10.3934/dcds.2013.33.1645

[12]

Primitivo B. Acosta-Humánez, Martha Alvarez-Ramírez, David Blázquez-Sanz, Joaquín Delgado. Non-integrability criterium for normal variational equations around an integrable subsystem and an example: The Wilberforce spring-pendulum. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 965-986. doi: 10.3934/dcds.2013.33.965

[13]

Ernest Fontich, Pau Martín. Arnold diffusion in perturbations of analytic integrable Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 61-84. doi: 10.3934/dcds.2001.7.61

[14]

Chiara Leone, Anna Verde, Giovanni Pisante. Higher integrability results for non smooth parabolic systems: The subquadratic case. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 177-190. doi: 10.3934/dcdsb.2009.11.177

[15]

Wenlei Li, Shaoyun Shi. Weak-Painlevé property and integrability of general dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3667-3681. doi: 10.3934/dcds.2014.34.3667

[16]

Wenxiong Chen, Congming Li. Harmonic maps on complete manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 799-804. doi: 10.3934/dcds.1999.5.799

[17]

Paula Kemp. Fixed points and complete lattices. Conference Publications, 2007, 2007 (Special) : 568-572. doi: 10.3934/proc.2007.2007.568

[18]

Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481

[19]

Andy Hammerlindl. Integrability and Lyapunov exponents. Journal of Modern Dynamics, 2011, 5 (1) : 107-122. doi: 10.3934/jmd.2011.5.107

[20]

Klas Modin, Olivier Verdier. Integrability of nonholonomically coupled oscillators. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1121-1130. doi: 10.3934/dcds.2014.34.1121

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]