March  2017, 9(1): 1-45. doi: 10.3934/jgm.2017001

Second-order constrained variational problems on Lie algebroids: Applications to Optimal Control

Department of Mathematics, University of Michigan, 530 Church Street, 3828 East Hall, Ann Arbor, Michigan, 48109, USA

Received  June 2016 Revised  January 2017 Published  March 2017

The aim of this work is to study, from an intrinsic and geometric point of view, second-order constrained variational problems on Lie algebroids, that is, optimization problems defined by a cost function which depends on higher-order derivatives of admissible curves on a Lie algebroid. Extending the classical Skinner and Rusk formalism for the mechanics in the context of Lie algebroids, for second-order constrained mechanical systems, we derive the corresponding dynamical equations. We find a symplectic Lie subalgebroid where, under some mild regularity conditions, the second-order constrained variational problem, seen as a presymplectic Hamiltonian system, has a unique solution. We study the relationship of this formalism with the second-order constrained Euler-Poincaré and Lagrange-Poincaré equations, among others. Our study is applied to the optimal control of mechanical systems.

Citation: Leonardo Colombo. Second-order constrained variational problems on Lie algebroids: Applications to Optimal Control. Journal of Geometric Mechanics, 2017, 9 (1) : 1-45. doi: 10.3934/jgm.2017001
References:
[1]

L. AbrunheiroM. CamarinhaJ. CarinenaJ. Clemente-GallardoE. Martínez and P. Santos, Some applications of quasi-velocities in optimal control, International Journal of Geometric Methods in Modern Physics, 8 (2011), 835-851.  doi: 10.1142/S0219887811005427.  Google Scholar

[2]

M. Barbero LiñánA. Echeverría-EnríquezD. Martín de DiegoM.C. Muñoz-Lecanda and N. Román-Roy, Unified formalism for non-autonomous mechanical systems, J. Math. Phys., 49 (2008), 062902, 14pp.  doi: 10.1063/1.2929668.  Google Scholar

[3]

M. Barbero LiñanM. de LeónD. Martín de Diego and M. Muñoz Lecanda, Kinematic reduction and the Hamilton-Jacobi equation, J. Geometric Mechanics, 4 (2012), 207-237.  doi: 10.3934/jgm.2012.4.207.  Google Scholar

[4]

M. Barbero-LiñánA. Echeverría EnríquezD. Martín de DiegoM. C. Muñoz-Lecanda and N. Román-Roy, Skinner-Rusk unified formalism for optimal control systems and applications, J. Phys. A: Math Theor., 40 (2007), 12071-12093.  doi: 10.1088/1751-8113/40/40/005.  Google Scholar

[5]

A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics Series, 24, Springer-Verlag, New York, 2003. doi: 10.1007/b97376.  Google Scholar

[6]

A. M. Bloch and P. E. Crouch, On the equivalence of higher order variational problems and optimal control problems, Proceedings of 35rd IEEE Conference on Decision and Control, (1996), 1648-1653.   Google Scholar

[7]

A. BlochJ. Marsden and D. Zenkov, Quasivelocities and symmetries in non-holonomic systems, Dynamical Systems, 24 (2009), 187-222.  doi: 10.1080/14689360802609344.  Google Scholar

[8]

A. J. BruceK. Grabowska and J. Grabowski, Higher order mechanics on graded bundles, J. Phys. A, 48 (2015), 205203, 32PP.  doi: 10.1088/1751-8113/48/20/205203.  Google Scholar

[9]

A. J. Bruce, Higher contact-like structures and supersymmetry, J. Phys. A: Math. Theor., 45 (2012), 265205, 12PP.  doi: 10.1088/1751-8113/45/26/265205.  Google Scholar

[10]

A. J. BruceK. GrabowskaJ. Grabowski and P. Urbanski, New developments in geometric mechanics, Conference proceedings "Geometry of Jets and Fields" (Bedlewo, 10-16 May, 2015), Banach Center Publ., 110 (2016), 57-72, Polish Acad. Sci., Warsaw, 2016.   Google Scholar

[11]

M. CamarinhaF. Silva-Leite and P. Crouch, Splines of class Ck on non-Euclidean spaces, IMA J. Math. Control Info., 12 (1995), 399-410.  doi: 10.1093/imamci/12.4.399.  Google Scholar

[12]

C. M. CamposM. de LeónD. Martín de Diego and K. Vankerschaver, Vankerschaver, Unambigous formalism for higher-order lagrangian field theories, J. Phys A: Math Theor., 42 (2009), 475207.   Google Scholar

[13]

A. Cannas da Silva and A. Weinstein, Geometric Models for Noncommutative Algebras, Amer. Math. Soc., Providence, RI, 1999  Google Scholar

[14]

J. CariñenaJ. Nunes da Costa and P. Santos, Quasi-coordinates from the point of view of Lie algebroid, J. Phys. A: Math. Theor., 40 (2007), 10031-10048.  doi: 10.1088/1751-8113/40/33/008.  Google Scholar

[15]

J. Cariñena and E. Martínez, Lie Algebroid Generalization of Geometric Mechanics, In Lie Algebroids and Related Topics in Differential Geometry Banach Center Publications, 54 (2011), P201.   Google Scholar

[16]

J. Cariñena and M. Rodríguez-Olmos, Gauge equivalence and conserved quantities for Lagrangian systems on Lie algebroids, Journal of Physics A: Mathematical and Theoretical, 42 (2009), 265209.   Google Scholar

[17]

H. CendraJ. Marsden and T. Ratiu, Lagrangian reduction by stages, Memoirs of the American Mathematical Society, 152 (2001), x+108 pp.  doi: 10.1090/memo/0722.  Google Scholar

[18]

S. A. Chaplygin, On the Theory of Motion of Nonholonomic Systems. The Theorem on the Reducing Multiplier, Math. Sbornik XXVIII, 303314, (in Russian) 1911. Google Scholar

[19]

L. ColomboD. Martín de Diego D and M. Zuccalli, Optimal control of underactuated mechanical systems: A geometrical approach, Journal Mathematical Physics, 51 (2010), 083519, 24pp.  doi: 10.1063/1.3456158.  Google Scholar

[20]

L. Colombo and D. Martín de Diego, Higher-order variational problems on Lie groups and optimal control applications, J. Geom. Mech., 6 (2014), 451-478.  doi: 10.3934/jgm.2014.6.451.  Google Scholar

[21]

L. ColomboM. de LeónP. D. Prieto-Martínez and N. Román-Roy, Unified formalism for the generalized kth-order Hamilton-Jacobi problem, Int. J. Geom. Methods Mod. Phys., 11 (2014), 1460037, 9pp.  doi: 10.1088/1751-8113/47/23/235203.  Google Scholar

[22]

L. ColomboM. de LeónP. D. Prieto-Martínez and N. Román-Roy, Unified formalism for the generalized kth-order Hamilton-Jacobi problem, Int. J. Geom. Methods Mod. Phys., 11 (2014), 1460037, 9pp.  doi: 10.1142/S0219887814600378.  Google Scholar

[23]

L. Colombo and P. D. Prieto-Martínez, Unified formalism for higher-order variational problems and its applications in optimal control, Int. J. Geom. Methods Mod. Phys., 11 (2014), 1450034, 31pp.  doi: 10.1142/S0219887814500340.  Google Scholar

[24]

L. A. Cordero, C. T. J. Dodson and M. de León, Differential Geometry of Frame Bundles, Mathematics and Its Applications, Kluwer, Dordrecht, 1989. doi: 10.1007/978-94-009-1265-6.  Google Scholar

[25]

J. CortesS. Martínez and F. Cantrijn, Skinner-Rusk approach to time-dependent mechanics, Phys. Lett. A, 300 (2002), 250-258.  doi: 10.1016/S0375-9601(02)00777-6.  Google Scholar

[26]

J. CortésM. de LeónJ. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids, Discrete and Continuous Dynamical Systems -Series A, 24 (2009), 213-271.  doi: 10.3934/dcds.2009.24.213.  Google Scholar

[27]

J. Cortés and E. Martínez, Mechanical control systems on Lie algebroids, SIAM J. Control Optim., 41 (2002), 1389-1412.  doi: 10.1137/S036301290036817X.  Google Scholar

[28]

M. CrampinW. Sarlet and F. Cantrijn, Higher order differential equations and higher order Lagrangian Mechanics, Math. Proc. Camb. Phil. Soc., 99 (1986), 565-587.  doi: 10.1017/S0305004100064501.  Google Scholar

[29]

A. Echeverría-EnríquezC. LópezJ. Marín-SolanoM. C. Muñoz-Lecanda and N. Román-Roy, Lagrangian-Hamiltonian unified formalism for field theory, J. Math. Phys., 45 (2004), 360-380.   Google Scholar

[30]

F. Gay-BalmazD. D. HolmD. MeierT. Ratiu and F. Vialard, Invariant higher-order variational problems, Communications in Mathematical Physics, 309 (2012), 413-458.  doi: 10.1007/s00220-011-1313-y.  Google Scholar

[31]

F. Gay-BalmazD. D. HolmD. MeierT. Ratiu and F. Vialard, Invariant higher-order variational problems Ⅱ, Journal of Nonlinear Science, 22 (2012), 553-597.  doi: 10.1007/s00332-012-9137-2.  Google Scholar

[32]

F. Gay-BalmazD. D. Holm and T. Ratiu, Higher-order Lagrange-Poincaré and HamiltonPoincaré reductions, Bulletin of the Brazilian Math. Soc., 42 (2011), 579-606.  doi: 10.1007/s00574-011-0030-7.  Google Scholar

[33]

K. Grabowska and J. Grabowski, Variational calculus with constraints on general algebroids, Journal of Physics A: Mathematical and Theoretical, 41 (2008), 175204, 25pp.  doi: 10.1088/1751-8113/41/17/175204.  Google Scholar

[34]

K. GrabowskaP. Urbański and J. Grabowski, Tangent and cotangent lifts and graded Lie algebras associated with Lie algebroids, Ann. Global Anal. Geom., 15 (1997), 447-486.  doi: 10.1023/A:1006519730920.  Google Scholar

[35]

K. Grabowska and L. Vitagliano, Tulczyjew triples in higher derivative field theory, J. Geometric Mechanics, 7 (2015), 1-33.  doi: 10.3934/jgm.2015.7.1.  Google Scholar

[36]

J. GrabowskiM. de LeónJ. C. Marrero and D. Martín de Diego, Nonholonomic constraints: A new viewpoint, Journal of Mathematical Physics, 50 (2009), 013520, 17pp.  doi: 10.1063/1.3049752.  Google Scholar

[37]

J. Grabowski and M. Jozwikowski, Pontryagin maximum principle on almost Lie algebroids, SIAM J. on Control and Optimization, 49 (2011), 1306-1357.  doi: 10.1137/090760246.  Google Scholar

[38]

M. J. Gotay and J. Nester, Nester, Presymplectic Lagrangian systems Ⅰ: The constraint algorithm and the equivalence theorem, Ann. Inst. Henri Poincaré, 30 (1979), 129-142.   Google Scholar

[39]

M. J. GotayJ. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints, J. Math. Phys., 19 (1978), 2388-2399.  doi: 10.1063/1.523597.  Google Scholar

[40]

P. Higgins and K. Mackenzie, Algebraic constructions in the category of Lie algebroids, J. Algebra, 129 (1990), 194-230.  doi: 10.1016/0021-8693(90)90246-K.  Google Scholar

[41]

I. Hussein and A. Bloch, Dynamic coverage optimal control for multiple spacecraft interferometric imaging, Journal of Dynamical and Control Systems, 13 (2007), 69-93.  doi: 10.1007/s10883-006-9004-2.  Google Scholar

[42]

D. IglesiasJ. C. MarreroD. Martín de Diego and D. Sosa, Singular Lagrangian systems and variational constrained mechanics on Lie algebroids, Dyn. Syst., 23 (2008), 351-397.  doi: 10.1080/14689360802294220.  Google Scholar

[43]

D. Iglesias DJ. C. MarreroD. Martín de Diego and E. Padrón, Discrete dynamics in implicit form, Discrete and Continuous Dynamical Systems -Series A, 33 (2013), 1117-1135.  doi: 10.3934/dcds.2013.33.1117.  Google Scholar

[44]

M. Jozwikowski and M. Rotkiewicz, Bundle-theoretic methods for higher-order variational calculus, J. Geometric Mechanics, 6 (2014), 99-120.  doi: 10.3934/jgm.2014.6.99.  Google Scholar

[45]

M. Jóźwikowski and M. Rotkiewicz, Prototypes of higher algebroids with applications to variational calculus, arXiv: 1306.3379v2, (2014). Google Scholar

[46]

M. Jozwikowski and M. Rotkiewicz, Models for higher algebroids, Journal Geometric Mechanics, 7 (2015), 317-359.  doi: 10.3934/jgm.2015.7.317.  Google Scholar

[47]

J. Klein, Espacies variationnels et Mécanique, Annales de l'institut Fourier, 12 (1962), 1-124.  doi: 10.5802/aif.120.  Google Scholar

[48]

K. J. Kyriakopoulos and G. N. Saridis, Minimum jerk path generation, in Proceedings of the 1988 IEEE International Conference on Robotics and Automation, Philadelphia, 1988,364-369. doi: 10.1109/ROBOT.1988.12075.  Google Scholar

[49]

M. de LeónJ. C. Marrero and D. Martín de Diego, Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics, J. Geom. Mech., 2 (2010), 159-198.  doi: 10.3934/jgm.2010.2.159.  Google Scholar

[50]

M. de León and P. Rodrigues, Generalized Classical Mechanics and Field Theory, North-Holland Mathematical Studies 112, North-Holland, Amsterdam, 1985.  Google Scholar

[51]

M de LéonJ. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A, 38 (2005), R241-R308.  doi: 10.1088/0305-4470/38/24/R01.  Google Scholar

[52]

L. MachadoF. Silva Leite and K. Krakowski, Higher-order smoothing splines versus least squares problems on Riemannian manifolds, J. Dyn. Control Syst., 16 (2010), 121-148.  doi: 10.1007/s10883-010-9080-1.  Google Scholar

[53]

K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, London Mathematical society Lecture Notes. 213, Cambridge University Press, 2005. doi: 10.1017/CBO9781107325883.  Google Scholar

[54]

J. C. Marrero, Hamiltonian mechanical systems on Lie algebroids, unimodularity and preservation of volumes, J. Geometric Mechanics, 2 (2010), 243-263.  doi: 10.3934/jgm.2010.2.243.  Google Scholar

[55]

J. C. MarreroE. Padrón and M. Rodríguez-Olmos, Reduction of a symplectic-like Lie algebroid with momentum map and its application to fiberwise linear Poisson structures, J. Phys. A: Math. Theor., 45 (2012), 16520, 34pp.  doi: 10.1088/1751-8113/45/16/165201.  Google Scholar

[56]

E. Martiínez, Classical field theory on Lie algebroids: Variational aspects, J. Phys. A: Math. Gen., 38 (2005), 7145-7160.  doi: 10.1088/0305-4470/38/32/005.  Google Scholar

[57]

E. Martínez, Variational calculus on Lie algebroids, ESAIM: Control, Optimisation and Calculus of Variations, 14 (2008), 356-380.  doi: 10.1051/cocv:2007056.  Google Scholar

[58]

E. Martínez, Reduction in optimal control theory, Reports in Mathematical Physics, 53 (2004), 79-90.  doi: 10.1016/S0034-4877(04)90005-5.  Google Scholar

[59]

E. Martínez, Geometric formulation of Mechanics on Lie algebroids, In Proceedings of the Ⅷ Fall Workshop on Geometry and Physics, Medina del Campo, 1999, Publicaciones de la RSME, 2 (2001), 209-222.  Google Scholar

[60]

E. Martínez, Lagrangian Mechanics on Lie algebroids, Acta Appl. Math., 67 (2001), 295-320.  doi: 10.1023/A:1011965919259.  Google Scholar

[61]

E. Martínez, Higher-order variational calculus on Lie algebroids, J. Geometric Mechanics, 7 (2015), 81-108.  doi: 10.3934/jgm.2015.7.81.  Google Scholar

[62]

E. Martínez and J. Cortés, Lie algebroids in classical mechanics and optimal control, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), 17 pp.   Google Scholar

[63]

J. Maruskin and A. Bloch, The Boltzmann-Hamel equations for the optimal control of mechanical systems with nonholonomic constraints, International Journal of Robust and Nonlinear Control, 21 (2011), 373-386.  doi: 10.1002/rnc.1598.  Google Scholar

[64]

D. Meier, Invariant Higher-Order Variational Problems: Reduction, Geometry and Applications, Ph. D Thesis, Imperial College London, 2013. Google Scholar

[65]

T. Mestdag and B. Langerock, A Lie algebroid framework for non-holonomic systems, Journal of Physics A: Mathematical and General, 38 (2005), 1097-1111.  doi: 10.1088/0305-4470/38/5/011.  Google Scholar

[66]

L. NoakesG. Heinzinger and B. Paden, Cubic splines on curved spaces, IMA Journal of Mathematical Control & Information, 6 (1989), 465-473.  doi: 10.1093/imamci/6.4.465.  Google Scholar

[67]

J. P. Ostrowski, Computing reduced equations for robotic systems with constraints and symmetries, IEEE Transactions on Robotic and Automation, 15 (1999), 111-123.  doi: 10.1109/70.744607.  Google Scholar

[68]

L. Popescu, The geometry of Lie algebroids and its applicationsto optimal control, Preprint, arXiv: 1302.5212, 2013. Google Scholar

[69]

P. Popescu, On higher order geometry on anchored vector bundles, Central European Journal of Mathematics, 2 (2004), 826-839.  doi: 10.2478/BF02475980.  Google Scholar

[70]

M. Popescu and P. Popescu, Geometric objects defined by almost Lie structures, In Proceedings of the Workshop on Lie algebroids and related topics in Differential Geometry, Warsaw 2001, Banach Center Publ., 54 (2001), 217-233. doi: 10.4064/bc54-0-12.  Google Scholar

[71]

P. D. Prieto-Martínez and N. Román-Roy, Lagrangian-Hamiltonian unified formalism for autonomous higher-order dynamical systems, J. Phys. A, 44 (2011), 385203, 35pp.  doi: 10.1088/1751-8113/44/38/385203.  Google Scholar

[72]

P. D. Prieto-Martínez and N. Román-Roy, Unified formalism for higher-order non-autonomous dynamical systems, J. Math. Phys., 53 (2012), 32901, 38pp.  doi: 10.1063/1.3692326.  Google Scholar

[73]

D. Saunders, Prolongations of Lie groupoids and Lie algebroids, Houston J. Math., 30 (2004), 637-655.   Google Scholar

[74]

R. Skinner and R. Rusk, Generalized Hamiltonian dynamics Ⅰ. Formulation on T *QT Q, Journal of Mathematical Pyhsics, 24 (1983), 2589-2594.  doi: 10.1063/1.525654.  Google Scholar

[75]

L. Vitagliano, The Lagrangian-Hamiltonian formalism for higher order field theories, Journal of Geometry and Pyhsics, 60 (2010), 857-873.  doi: 10.1016/j.geomphys.2010.02.003.  Google Scholar

[76]

A. Weinstein, Lagrangian Mechanics and groupoids, Fields Inst. Comm., 7 (1996), 207-231.   Google Scholar

show all references

References:
[1]

L. AbrunheiroM. CamarinhaJ. CarinenaJ. Clemente-GallardoE. Martínez and P. Santos, Some applications of quasi-velocities in optimal control, International Journal of Geometric Methods in Modern Physics, 8 (2011), 835-851.  doi: 10.1142/S0219887811005427.  Google Scholar

[2]

M. Barbero LiñánA. Echeverría-EnríquezD. Martín de DiegoM.C. Muñoz-Lecanda and N. Román-Roy, Unified formalism for non-autonomous mechanical systems, J. Math. Phys., 49 (2008), 062902, 14pp.  doi: 10.1063/1.2929668.  Google Scholar

[3]

M. Barbero LiñanM. de LeónD. Martín de Diego and M. Muñoz Lecanda, Kinematic reduction and the Hamilton-Jacobi equation, J. Geometric Mechanics, 4 (2012), 207-237.  doi: 10.3934/jgm.2012.4.207.  Google Scholar

[4]

M. Barbero-LiñánA. Echeverría EnríquezD. Martín de DiegoM. C. Muñoz-Lecanda and N. Román-Roy, Skinner-Rusk unified formalism for optimal control systems and applications, J. Phys. A: Math Theor., 40 (2007), 12071-12093.  doi: 10.1088/1751-8113/40/40/005.  Google Scholar

[5]

A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics Series, 24, Springer-Verlag, New York, 2003. doi: 10.1007/b97376.  Google Scholar

[6]

A. M. Bloch and P. E. Crouch, On the equivalence of higher order variational problems and optimal control problems, Proceedings of 35rd IEEE Conference on Decision and Control, (1996), 1648-1653.   Google Scholar

[7]

A. BlochJ. Marsden and D. Zenkov, Quasivelocities and symmetries in non-holonomic systems, Dynamical Systems, 24 (2009), 187-222.  doi: 10.1080/14689360802609344.  Google Scholar

[8]

A. J. BruceK. Grabowska and J. Grabowski, Higher order mechanics on graded bundles, J. Phys. A, 48 (2015), 205203, 32PP.  doi: 10.1088/1751-8113/48/20/205203.  Google Scholar

[9]

A. J. Bruce, Higher contact-like structures and supersymmetry, J. Phys. A: Math. Theor., 45 (2012), 265205, 12PP.  doi: 10.1088/1751-8113/45/26/265205.  Google Scholar

[10]

A. J. BruceK. GrabowskaJ. Grabowski and P. Urbanski, New developments in geometric mechanics, Conference proceedings "Geometry of Jets and Fields" (Bedlewo, 10-16 May, 2015), Banach Center Publ., 110 (2016), 57-72, Polish Acad. Sci., Warsaw, 2016.   Google Scholar

[11]

M. CamarinhaF. Silva-Leite and P. Crouch, Splines of class Ck on non-Euclidean spaces, IMA J. Math. Control Info., 12 (1995), 399-410.  doi: 10.1093/imamci/12.4.399.  Google Scholar

[12]

C. M. CamposM. de LeónD. Martín de Diego and K. Vankerschaver, Vankerschaver, Unambigous formalism for higher-order lagrangian field theories, J. Phys A: Math Theor., 42 (2009), 475207.   Google Scholar

[13]

A. Cannas da Silva and A. Weinstein, Geometric Models for Noncommutative Algebras, Amer. Math. Soc., Providence, RI, 1999  Google Scholar

[14]

J. CariñenaJ. Nunes da Costa and P. Santos, Quasi-coordinates from the point of view of Lie algebroid, J. Phys. A: Math. Theor., 40 (2007), 10031-10048.  doi: 10.1088/1751-8113/40/33/008.  Google Scholar

[15]

J. Cariñena and E. Martínez, Lie Algebroid Generalization of Geometric Mechanics, In Lie Algebroids and Related Topics in Differential Geometry Banach Center Publications, 54 (2011), P201.   Google Scholar

[16]

J. Cariñena and M. Rodríguez-Olmos, Gauge equivalence and conserved quantities for Lagrangian systems on Lie algebroids, Journal of Physics A: Mathematical and Theoretical, 42 (2009), 265209.   Google Scholar

[17]

H. CendraJ. Marsden and T. Ratiu, Lagrangian reduction by stages, Memoirs of the American Mathematical Society, 152 (2001), x+108 pp.  doi: 10.1090/memo/0722.  Google Scholar

[18]

S. A. Chaplygin, On the Theory of Motion of Nonholonomic Systems. The Theorem on the Reducing Multiplier, Math. Sbornik XXVIII, 303314, (in Russian) 1911. Google Scholar

[19]

L. ColomboD. Martín de Diego D and M. Zuccalli, Optimal control of underactuated mechanical systems: A geometrical approach, Journal Mathematical Physics, 51 (2010), 083519, 24pp.  doi: 10.1063/1.3456158.  Google Scholar

[20]

L. Colombo and D. Martín de Diego, Higher-order variational problems on Lie groups and optimal control applications, J. Geom. Mech., 6 (2014), 451-478.  doi: 10.3934/jgm.2014.6.451.  Google Scholar

[21]

L. ColomboM. de LeónP. D. Prieto-Martínez and N. Román-Roy, Unified formalism for the generalized kth-order Hamilton-Jacobi problem, Int. J. Geom. Methods Mod. Phys., 11 (2014), 1460037, 9pp.  doi: 10.1088/1751-8113/47/23/235203.  Google Scholar

[22]

L. ColomboM. de LeónP. D. Prieto-Martínez and N. Román-Roy, Unified formalism for the generalized kth-order Hamilton-Jacobi problem, Int. J. Geom. Methods Mod. Phys., 11 (2014), 1460037, 9pp.  doi: 10.1142/S0219887814600378.  Google Scholar

[23]

L. Colombo and P. D. Prieto-Martínez, Unified formalism for higher-order variational problems and its applications in optimal control, Int. J. Geom. Methods Mod. Phys., 11 (2014), 1450034, 31pp.  doi: 10.1142/S0219887814500340.  Google Scholar

[24]

L. A. Cordero, C. T. J. Dodson and M. de León, Differential Geometry of Frame Bundles, Mathematics and Its Applications, Kluwer, Dordrecht, 1989. doi: 10.1007/978-94-009-1265-6.  Google Scholar

[25]

J. CortesS. Martínez and F. Cantrijn, Skinner-Rusk approach to time-dependent mechanics, Phys. Lett. A, 300 (2002), 250-258.  doi: 10.1016/S0375-9601(02)00777-6.  Google Scholar

[26]

J. CortésM. de LeónJ. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids, Discrete and Continuous Dynamical Systems -Series A, 24 (2009), 213-271.  doi: 10.3934/dcds.2009.24.213.  Google Scholar

[27]

J. Cortés and E. Martínez, Mechanical control systems on Lie algebroids, SIAM J. Control Optim., 41 (2002), 1389-1412.  doi: 10.1137/S036301290036817X.  Google Scholar

[28]

M. CrampinW. Sarlet and F. Cantrijn, Higher order differential equations and higher order Lagrangian Mechanics, Math. Proc. Camb. Phil. Soc., 99 (1986), 565-587.  doi: 10.1017/S0305004100064501.  Google Scholar

[29]

A. Echeverría-EnríquezC. LópezJ. Marín-SolanoM. C. Muñoz-Lecanda and N. Román-Roy, Lagrangian-Hamiltonian unified formalism for field theory, J. Math. Phys., 45 (2004), 360-380.   Google Scholar

[30]

F. Gay-BalmazD. D. HolmD. MeierT. Ratiu and F. Vialard, Invariant higher-order variational problems, Communications in Mathematical Physics, 309 (2012), 413-458.  doi: 10.1007/s00220-011-1313-y.  Google Scholar

[31]

F. Gay-BalmazD. D. HolmD. MeierT. Ratiu and F. Vialard, Invariant higher-order variational problems Ⅱ, Journal of Nonlinear Science, 22 (2012), 553-597.  doi: 10.1007/s00332-012-9137-2.  Google Scholar

[32]

F. Gay-BalmazD. D. Holm and T. Ratiu, Higher-order Lagrange-Poincaré and HamiltonPoincaré reductions, Bulletin of the Brazilian Math. Soc., 42 (2011), 579-606.  doi: 10.1007/s00574-011-0030-7.  Google Scholar

[33]

K. Grabowska and J. Grabowski, Variational calculus with constraints on general algebroids, Journal of Physics A: Mathematical and Theoretical, 41 (2008), 175204, 25pp.  doi: 10.1088/1751-8113/41/17/175204.  Google Scholar

[34]

K. GrabowskaP. Urbański and J. Grabowski, Tangent and cotangent lifts and graded Lie algebras associated with Lie algebroids, Ann. Global Anal. Geom., 15 (1997), 447-486.  doi: 10.1023/A:1006519730920.  Google Scholar

[35]

K. Grabowska and L. Vitagliano, Tulczyjew triples in higher derivative field theory, J. Geometric Mechanics, 7 (2015), 1-33.  doi: 10.3934/jgm.2015.7.1.  Google Scholar

[36]

J. GrabowskiM. de LeónJ. C. Marrero and D. Martín de Diego, Nonholonomic constraints: A new viewpoint, Journal of Mathematical Physics, 50 (2009), 013520, 17pp.  doi: 10.1063/1.3049752.  Google Scholar

[37]

J. Grabowski and M. Jozwikowski, Pontryagin maximum principle on almost Lie algebroids, SIAM J. on Control and Optimization, 49 (2011), 1306-1357.  doi: 10.1137/090760246.  Google Scholar

[38]

M. J. Gotay and J. Nester, Nester, Presymplectic Lagrangian systems Ⅰ: The constraint algorithm and the equivalence theorem, Ann. Inst. Henri Poincaré, 30 (1979), 129-142.   Google Scholar

[39]

M. J. GotayJ. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints, J. Math. Phys., 19 (1978), 2388-2399.  doi: 10.1063/1.523597.  Google Scholar

[40]

P. Higgins and K. Mackenzie, Algebraic constructions in the category of Lie algebroids, J. Algebra, 129 (1990), 194-230.  doi: 10.1016/0021-8693(90)90246-K.  Google Scholar

[41]

I. Hussein and A. Bloch, Dynamic coverage optimal control for multiple spacecraft interferometric imaging, Journal of Dynamical and Control Systems, 13 (2007), 69-93.  doi: 10.1007/s10883-006-9004-2.  Google Scholar

[42]

D. IglesiasJ. C. MarreroD. Martín de Diego and D. Sosa, Singular Lagrangian systems and variational constrained mechanics on Lie algebroids, Dyn. Syst., 23 (2008), 351-397.  doi: 10.1080/14689360802294220.  Google Scholar

[43]

D. Iglesias DJ. C. MarreroD. Martín de Diego and E. Padrón, Discrete dynamics in implicit form, Discrete and Continuous Dynamical Systems -Series A, 33 (2013), 1117-1135.  doi: 10.3934/dcds.2013.33.1117.  Google Scholar

[44]

M. Jozwikowski and M. Rotkiewicz, Bundle-theoretic methods for higher-order variational calculus, J. Geometric Mechanics, 6 (2014), 99-120.  doi: 10.3934/jgm.2014.6.99.  Google Scholar

[45]

M. Jóźwikowski and M. Rotkiewicz, Prototypes of higher algebroids with applications to variational calculus, arXiv: 1306.3379v2, (2014). Google Scholar

[46]

M. Jozwikowski and M. Rotkiewicz, Models for higher algebroids, Journal Geometric Mechanics, 7 (2015), 317-359.  doi: 10.3934/jgm.2015.7.317.  Google Scholar

[47]

J. Klein, Espacies variationnels et Mécanique, Annales de l'institut Fourier, 12 (1962), 1-124.  doi: 10.5802/aif.120.  Google Scholar

[48]

K. J. Kyriakopoulos and G. N. Saridis, Minimum jerk path generation, in Proceedings of the 1988 IEEE International Conference on Robotics and Automation, Philadelphia, 1988,364-369. doi: 10.1109/ROBOT.1988.12075.  Google Scholar

[49]

M. de LeónJ. C. Marrero and D. Martín de Diego, Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics, J. Geom. Mech., 2 (2010), 159-198.  doi: 10.3934/jgm.2010.2.159.  Google Scholar

[50]

M. de León and P. Rodrigues, Generalized Classical Mechanics and Field Theory, North-Holland Mathematical Studies 112, North-Holland, Amsterdam, 1985.  Google Scholar

[51]

M de LéonJ. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A, 38 (2005), R241-R308.  doi: 10.1088/0305-4470/38/24/R01.  Google Scholar

[52]

L. MachadoF. Silva Leite and K. Krakowski, Higher-order smoothing splines versus least squares problems on Riemannian manifolds, J. Dyn. Control Syst., 16 (2010), 121-148.  doi: 10.1007/s10883-010-9080-1.  Google Scholar

[53]

K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, London Mathematical society Lecture Notes. 213, Cambridge University Press, 2005. doi: 10.1017/CBO9781107325883.  Google Scholar

[54]

J. C. Marrero, Hamiltonian mechanical systems on Lie algebroids, unimodularity and preservation of volumes, J. Geometric Mechanics, 2 (2010), 243-263.  doi: 10.3934/jgm.2010.2.243.  Google Scholar

[55]

J. C. MarreroE. Padrón and M. Rodríguez-Olmos, Reduction of a symplectic-like Lie algebroid with momentum map and its application to fiberwise linear Poisson structures, J. Phys. A: Math. Theor., 45 (2012), 16520, 34pp.  doi: 10.1088/1751-8113/45/16/165201.  Google Scholar

[56]

E. Martiínez, Classical field theory on Lie algebroids: Variational aspects, J. Phys. A: Math. Gen., 38 (2005), 7145-7160.  doi: 10.1088/0305-4470/38/32/005.  Google Scholar

[57]

E. Martínez, Variational calculus on Lie algebroids, ESAIM: Control, Optimisation and Calculus of Variations, 14 (2008), 356-380.  doi: 10.1051/cocv:2007056.  Google Scholar

[58]

E. Martínez, Reduction in optimal control theory, Reports in Mathematical Physics, 53 (2004), 79-90.  doi: 10.1016/S0034-4877(04)90005-5.  Google Scholar

[59]

E. Martínez, Geometric formulation of Mechanics on Lie algebroids, In Proceedings of the Ⅷ Fall Workshop on Geometry and Physics, Medina del Campo, 1999, Publicaciones de la RSME, 2 (2001), 209-222.  Google Scholar

[60]

E. Martínez, Lagrangian Mechanics on Lie algebroids, Acta Appl. Math., 67 (2001), 295-320.  doi: 10.1023/A:1011965919259.  Google Scholar

[61]

E. Martínez, Higher-order variational calculus on Lie algebroids, J. Geometric Mechanics, 7 (2015), 81-108.  doi: 10.3934/jgm.2015.7.81.  Google Scholar

[62]

E. Martínez and J. Cortés, Lie algebroids in classical mechanics and optimal control, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), 17 pp.   Google Scholar

[63]

J. Maruskin and A. Bloch, The Boltzmann-Hamel equations for the optimal control of mechanical systems with nonholonomic constraints, International Journal of Robust and Nonlinear Control, 21 (2011), 373-386.  doi: 10.1002/rnc.1598.  Google Scholar

[64]

D. Meier, Invariant Higher-Order Variational Problems: Reduction, Geometry and Applications, Ph. D Thesis, Imperial College London, 2013. Google Scholar

[65]

T. Mestdag and B. Langerock, A Lie algebroid framework for non-holonomic systems, Journal of Physics A: Mathematical and General, 38 (2005), 1097-1111.  doi: 10.1088/0305-4470/38/5/011.  Google Scholar

[66]

L. NoakesG. Heinzinger and B. Paden, Cubic splines on curved spaces, IMA Journal of Mathematical Control & Information, 6 (1989), 465-473.  doi: 10.1093/imamci/6.4.465.  Google Scholar

[67]

J. P. Ostrowski, Computing reduced equations for robotic systems with constraints and symmetries, IEEE Transactions on Robotic and Automation, 15 (1999), 111-123.  doi: 10.1109/70.744607.  Google Scholar

[68]

L. Popescu, The geometry of Lie algebroids and its applicationsto optimal control, Preprint, arXiv: 1302.5212, 2013. Google Scholar

[69]

P. Popescu, On higher order geometry on anchored vector bundles, Central European Journal of Mathematics, 2 (2004), 826-839.  doi: 10.2478/BF02475980.  Google Scholar

[70]

M. Popescu and P. Popescu, Geometric objects defined by almost Lie structures, In Proceedings of the Workshop on Lie algebroids and related topics in Differential Geometry, Warsaw 2001, Banach Center Publ., 54 (2001), 217-233. doi: 10.4064/bc54-0-12.  Google Scholar

[71]

P. D. Prieto-Martínez and N. Román-Roy, Lagrangian-Hamiltonian unified formalism for autonomous higher-order dynamical systems, J. Phys. A, 44 (2011), 385203, 35pp.  doi: 10.1088/1751-8113/44/38/385203.  Google Scholar

[72]

P. D. Prieto-Martínez and N. Román-Roy, Unified formalism for higher-order non-autonomous dynamical systems, J. Math. Phys., 53 (2012), 32901, 38pp.  doi: 10.1063/1.3692326.  Google Scholar

[73]

D. Saunders, Prolongations of Lie groupoids and Lie algebroids, Houston J. Math., 30 (2004), 637-655.   Google Scholar

[74]

R. Skinner and R. Rusk, Generalized Hamiltonian dynamics Ⅰ. Formulation on T *QT Q, Journal of Mathematical Pyhsics, 24 (1983), 2589-2594.  doi: 10.1063/1.525654.  Google Scholar

[75]

L. Vitagliano, The Lagrangian-Hamiltonian formalism for higher order field theories, Journal of Geometry and Pyhsics, 60 (2010), 857-873.  doi: 10.1016/j.geomphys.2010.02.003.  Google Scholar

[76]

A. Weinstein, Lagrangian Mechanics and groupoids, Fields Inst. Comm., 7 (1996), 207-231.   Google Scholar

Figure 1.  Second order Skinner and Rusk formalism on Lie algebroids
[1]

Honglei Lang, Yunhe Sheng. Linearization of the higher analogue of Courant algebroids. Journal of Geometric Mechanics, 2020, 12 (4) : 585-606. doi: 10.3934/jgm.2020025

[2]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[3]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[4]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[5]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[6]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[7]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[8]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[9]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[10]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[11]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[12]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[13]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[14]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[15]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[16]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[17]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[18]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[19]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[20]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (148)
  • HTML views (133)
  • Cited by (3)

Other articles
by authors

[Back to Top]