June  2017, 9(2): 157-165. doi: 10.3934/jgm.2017006

The Madelung transform as a momentum map

Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada

Received  December 2015 Revised  May 2016 Published  May 2017

The Madelung transform relates the non-linear Schrödinger equation and a compressible Euler equation known as the quantum hydrodynamical system. We prove that the Madelung transform is a momentum map associated with an action of the semidirect product group $\mathrm{Diff}(\mathbb{R}^{n}) \ltimes H^∞(\mathbb{R}^n; \mathbb{R})$, which is the configuration space of compressible fluids, on the space $Ψ = H^∞(\mathbb{R}^{n}; \mathbb{C})$ of wave functions. In particular, this implies that the Madelung transform is a Poisson map taking the natural Poisson bracket on $Ψ$ to the compressible fluid Poisson bracket. Moreover, the Madelung transform provides an example of "Clebsch variables" for the hydrodynamical system.

Citation: Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006
References:
[1]

R. CarlesR. Danchin and J.-C. Saut, Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity, 25 (2012), 2843-2873.  doi: 10.1088/0951-7715/25/10/2843.  Google Scholar

[2]

B. Khesin, G. Misiolek and K. Modin, Geometry of Newton's equation on diffeomorphisms and densities, work in progress. Google Scholar

[3]

B. Kolev, Poisson brackets in hydrodynamics, Discrete and Continuous Dynamical Systems, 19 (2007), 555-574.  doi: 10.3934/dcds.2007.19.555.  Google Scholar

[4]

E. Madelung, Quantentheorie in hydrodynamischer Form, Zeitschrift für Physik, 40 (1927), 322-326.  doi: 10.1007/BF01400372.  Google Scholar

[5]

J. E. MarsdenT. Ratiu and A. Weinstein, Semidirect products and reduction in mechanics, Transactions of the American Mathematical Society, 281 (1984), 147-177.  doi: 10.2307/1999527.  Google Scholar

[6]

J. E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, 2nd edition, Springer-Verlag, New York, 1999. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[7]

J. E. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1983), 305-323.  doi: 10.1016/0167-2789(83)90134-3.  Google Scholar

[8]

M.-K. von Renesse, An optimal transport view of Schrödinger's equation, Canadian Mathematical Bulletin, 55 (2012), 858-869.  doi: 10.4153/CMB-2011-121-9.  Google Scholar

[9]

A. Weinstein, The local structure of Poisson manifolds, Journal of Differential Geometry, 18 (1983), 523-557.  doi: 10.4310/jdg/1214437787.  Google Scholar

show all references

References:
[1]

R. CarlesR. Danchin and J.-C. Saut, Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity, 25 (2012), 2843-2873.  doi: 10.1088/0951-7715/25/10/2843.  Google Scholar

[2]

B. Khesin, G. Misiolek and K. Modin, Geometry of Newton's equation on diffeomorphisms and densities, work in progress. Google Scholar

[3]

B. Kolev, Poisson brackets in hydrodynamics, Discrete and Continuous Dynamical Systems, 19 (2007), 555-574.  doi: 10.3934/dcds.2007.19.555.  Google Scholar

[4]

E. Madelung, Quantentheorie in hydrodynamischer Form, Zeitschrift für Physik, 40 (1927), 322-326.  doi: 10.1007/BF01400372.  Google Scholar

[5]

J. E. MarsdenT. Ratiu and A. Weinstein, Semidirect products and reduction in mechanics, Transactions of the American Mathematical Society, 281 (1984), 147-177.  doi: 10.2307/1999527.  Google Scholar

[6]

J. E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, 2nd edition, Springer-Verlag, New York, 1999. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[7]

J. E. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1983), 305-323.  doi: 10.1016/0167-2789(83)90134-3.  Google Scholar

[8]

M.-K. von Renesse, An optimal transport view of Schrödinger's equation, Canadian Mathematical Bulletin, 55 (2012), 858-869.  doi: 10.4153/CMB-2011-121-9.  Google Scholar

[9]

A. Weinstein, The local structure of Poisson manifolds, Journal of Differential Geometry, 18 (1983), 523-557.  doi: 10.4310/jdg/1214437787.  Google Scholar

[1]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[2]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[3]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[4]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[6]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[7]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[8]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[9]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[10]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[11]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[12]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[13]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[14]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[15]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[16]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[17]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[18]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[19]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[20]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (81)
  • HTML views (77)
  • Cited by (3)

Other articles
by authors

[Back to Top]