Advanced Search
Article Contents
Article Contents

The Madelung transform as a momentum map

Abstract Full Text(HTML) Related Papers Cited by
  • The Madelung transform relates the non-linear Schrödinger equation and a compressible Euler equation known as the quantum hydrodynamical system. We prove that the Madelung transform is a momentum map associated with an action of the semidirect product group $\mathrm{Diff}(\mathbb{R}^{n}) \ltimes H^∞(\mathbb{R}^n; \mathbb{R})$, which is the configuration space of compressible fluids, on the space $Ψ = H^∞(\mathbb{R}^{n}; \mathbb{C})$ of wave functions. In particular, this implies that the Madelung transform is a Poisson map taking the natural Poisson bracket on $Ψ$ to the compressible fluid Poisson bracket. Moreover, the Madelung transform provides an example of "Clebsch variables" for the hydrodynamical system.

    Mathematics Subject Classification: Primary: 53D20, 76Y05; Secondary: 37K65.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   R. Carles , R. Danchin  and  J.-C. Saut , Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity, 25 (2012) , 2843-2873.  doi: 10.1088/0951-7715/25/10/2843.
      B. Khesin, G. Misiolek and K. Modin, Geometry of Newton's equation on diffeomorphisms and densities, work in progress.
      B. Kolev , Poisson brackets in hydrodynamics, Discrete and Continuous Dynamical Systems, 19 (2007) , 555-574.  doi: 10.3934/dcds.2007.19.555.
      E. Madelung , Quantentheorie in hydrodynamischer Form, Zeitschrift für Physik, 40 (1927) , 322-326.  doi: 10.1007/BF01400372.
      J. E. Marsden , T. Ratiu  and  A. Weinstein , Semidirect products and reduction in mechanics, Transactions of the American Mathematical Society, 281 (1984) , 147-177.  doi: 10.2307/1999527.
      J. E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, 2nd edition, Springer-Verlag, New York, 1999. doi: 10.1007/978-0-387-21792-5.
      J. E. Marsden  and  A. Weinstein , Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1983) , 305-323.  doi: 10.1016/0167-2789(83)90134-3.
      M.-K. von Renesse , An optimal transport view of Schrödinger's equation, Canadian Mathematical Bulletin, 55 (2012) , 858-869.  doi: 10.4153/CMB-2011-121-9.
      A. Weinstein , The local structure of Poisson manifolds, Journal of Differential Geometry, 18 (1983) , 523-557.  doi: 10.4310/jdg/1214437787.
  • 加载中

Article Metrics

HTML views(319) PDF downloads(232) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint