June  2017, 9(2): 191-206. doi: 10.3934/jgm.2017008

Möbius invariants in image recognition

1. 

Department of Mathematics, ONAFT, Odessa, Ukraine

2. 

Department of Mathematics, University of Tromsø, Norway

3. 

Institute of Control Sciences of RAS, Moscow, Russia

Received  February 2016 Revised  August 2016 Published  May 2017

In this paper rational differential invariants are used to classify various plane shapes as well as plane domains equipped with an additional geometrical object.

Citation: Konovenko Nadiia, Lychagin Valentin. Möbius invariants in image recognition. Journal of Geometric Mechanics, 2017, 9 (2) : 191-206. doi: 10.3934/jgm.2017008
References:
[1]

P. Bibikov and V. Lychagin, Projective classification of binary and ternary forms, Journal of Geometry and Physics, 61 (2011), 1914-1927.  doi: 10.1016/j.geomphys.2011.05.001.

[2]

M. Gordina and P. Lescot, Riemannian geometry of $\mathbf{Diff}(S^{1})$, Journal of Functional Analysis, 239 (2006), 611-630.  doi: 10.1016/j.jfa.2006.02.005.

[3]

E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen. Teil Ⅰ: Gewöhnliche Differentialgleichungen, Mathematik und ihre Anwendungen in Physik und Technik, Reihe A, , Bd. Leipzig: Akademische Verlagsgesellschaft, Geest and Portig K. -G., 18 (1959), xxvi+666 pp.

[4]

A. A. Kirillov, Geometric approach to discrete series of unireps for Vir, J. Math. Pures Appl., 77 (1998), 735-746.  doi: 10.1016/S0021-7824(98)80007-X.

[5]

N. Konovenko and V. Lychagin, Invariants of projective actions and their application to recognition of fingerprints, Anal. Math. Phys., 6 (2016), 95-107.  doi: 10.1007/s13324-015-0113-5.

[6]

N. Konovenko and V. Lychagin, Lobachevskian geometry in image recognition, Lobachevskii Journal of Mathematics, 36 (2015), 286-291.  doi: 10.1134/S1995080215030075.

[7]

N. Konovenko, Differential invariants and $\mathfrak{sl}_{2}$-geometries, Naukova Dumka, Kiev, (2013), 188pp. (in Russian).

[8]

I. S. Krasilshchik, V. V. Lychagin and A. M. Vinogradov, Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Advanced Studies in Contemporary Mathematics, 1. Gordon and Breach Science Publishers, New York, 1986.

[9]

B. Kruglikov and V. Lychagin, Geometry of differential equations, Handbook of global analysis, Elsevier Sci. B. V., Amsterdam, 1214 (2008), 725-771. doi: 10.1016/B978-044452833-9.50015-2.

[10]

B. Kruglikov and V. Lychagin, Global Lie-Tresse theorem, Selecta Math., 22 (2016), 1357-1411.  doi: 10.1007/s00029-015-0220-z.

[11]

P. Malliavin, The canonic diffusion above the diffeomorphism group of the circle, C. R. Acad. Sci. Paris, 329 (1999), 325-329.  doi: 10.1016/S0764-4442(00)88575-4.

[12]

P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach, Appl. Comput. Harmon. Anal., 23 (2007), 74-113.  doi: 10.1016/j.acha.2006.07.004.

[13]

M. Rosenlicht, A remark on quotient spaces, An. Acad. Brasil. Ci., 35 (1963), 487-489. 

[14]

G. Segal, The Geometry of the KdV equation, Inter. J. of Modern Physics A, 6 (1991), 2859-2869.  doi: 10.1142/S0217751X91001416.

[15]

E. Sharon and D. Mumford, 2D-Shape Analysis Using Conformal Mapping, International Journal of Computer Vision, 70 (2006), 55-75.  doi: 10.1109/CVPR.2004.1315185.

[16]

E. Witten, Coadjoint Orbits of the Virasoro Group, Commun. Math. Phys., 114 (1988), 1-53.  doi: 10.1007/BF01218287.

show all references

References:
[1]

P. Bibikov and V. Lychagin, Projective classification of binary and ternary forms, Journal of Geometry and Physics, 61 (2011), 1914-1927.  doi: 10.1016/j.geomphys.2011.05.001.

[2]

M. Gordina and P. Lescot, Riemannian geometry of $\mathbf{Diff}(S^{1})$, Journal of Functional Analysis, 239 (2006), 611-630.  doi: 10.1016/j.jfa.2006.02.005.

[3]

E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen. Teil Ⅰ: Gewöhnliche Differentialgleichungen, Mathematik und ihre Anwendungen in Physik und Technik, Reihe A, , Bd. Leipzig: Akademische Verlagsgesellschaft, Geest and Portig K. -G., 18 (1959), xxvi+666 pp.

[4]

A. A. Kirillov, Geometric approach to discrete series of unireps for Vir, J. Math. Pures Appl., 77 (1998), 735-746.  doi: 10.1016/S0021-7824(98)80007-X.

[5]

N. Konovenko and V. Lychagin, Invariants of projective actions and their application to recognition of fingerprints, Anal. Math. Phys., 6 (2016), 95-107.  doi: 10.1007/s13324-015-0113-5.

[6]

N. Konovenko and V. Lychagin, Lobachevskian geometry in image recognition, Lobachevskii Journal of Mathematics, 36 (2015), 286-291.  doi: 10.1134/S1995080215030075.

[7]

N. Konovenko, Differential invariants and $\mathfrak{sl}_{2}$-geometries, Naukova Dumka, Kiev, (2013), 188pp. (in Russian).

[8]

I. S. Krasilshchik, V. V. Lychagin and A. M. Vinogradov, Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Advanced Studies in Contemporary Mathematics, 1. Gordon and Breach Science Publishers, New York, 1986.

[9]

B. Kruglikov and V. Lychagin, Geometry of differential equations, Handbook of global analysis, Elsevier Sci. B. V., Amsterdam, 1214 (2008), 725-771. doi: 10.1016/B978-044452833-9.50015-2.

[10]

B. Kruglikov and V. Lychagin, Global Lie-Tresse theorem, Selecta Math., 22 (2016), 1357-1411.  doi: 10.1007/s00029-015-0220-z.

[11]

P. Malliavin, The canonic diffusion above the diffeomorphism group of the circle, C. R. Acad. Sci. Paris, 329 (1999), 325-329.  doi: 10.1016/S0764-4442(00)88575-4.

[12]

P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach, Appl. Comput. Harmon. Anal., 23 (2007), 74-113.  doi: 10.1016/j.acha.2006.07.004.

[13]

M. Rosenlicht, A remark on quotient spaces, An. Acad. Brasil. Ci., 35 (1963), 487-489. 

[14]

G. Segal, The Geometry of the KdV equation, Inter. J. of Modern Physics A, 6 (1991), 2859-2869.  doi: 10.1142/S0217751X91001416.

[15]

E. Sharon and D. Mumford, 2D-Shape Analysis Using Conformal Mapping, International Journal of Computer Vision, 70 (2006), 55-75.  doi: 10.1109/CVPR.2004.1315185.

[16]

E. Witten, Coadjoint Orbits of the Virasoro Group, Commun. Math. Phys., 114 (1988), 1-53.  doi: 10.1007/BF01218287.

[1]

Petr Kůrka. Minimality in iterative systems of Möbius transformations. Conference Publications, 2011, 2011 (Special) : 903-912. doi: 10.3934/proc.2011.2011.903

[2]

Petr Kůrka. Iterative systems of real Möbius transformations. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 567-574. doi: 10.3934/dcds.2009.25.567

[3]

Jon Chaika, Alex Eskin. Möbius disjointness for interval exchange transformations on three intervals. Journal of Modern Dynamics, 2019, 14: 55-86. doi: 10.3934/jmd.2019003

[4]

Jochen Abhau, Oswin Aichholzer, Sebastian Colutto, Bernhard Kornberger, Otmar Scherzer. Shape spaces via medial axis transforms for segmentation of complex geometry in 3D voxel data. Inverse Problems and Imaging, 2013, 7 (1) : 1-25. doi: 10.3934/ipi.2013.7.1

[5]

Zhiming Li, Yujun Zhu. Entropies of commuting transformations on Hilbert spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5795-5814. doi: 10.3934/dcds.2020246

[6]

Nguyen Thieu Huy, Pham Van Bang. Invariant stable manifolds for partial neutral functional differential equations in admissible spaces on a half-line. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2993-3011. doi: 10.3934/dcdsb.2015.20.2993

[7]

Philipp Reiter. Regularity theory for the Möbius energy. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1463-1471. doi: 10.3934/cpaa.2010.9.1463

[8]

Daniel Guan. Classification of compact complex homogeneous spaces with invariant volumes. Electronic Research Announcements, 1997, 3: 90-92.

[9]

Daniel Guan. Classification of compact homogeneous spaces with invariant symplectic structures. Electronic Research Announcements, 1997, 3: 52-54.

[10]

Rinaldo M. Colombo, Graziano Guerra. Differential equations in metric spaces with applications. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 733-753. doi: 10.3934/dcds.2009.23.733

[11]

Daniel Grieser. A natural differential operator on conic spaces. Conference Publications, 2011, 2011 (Special) : 568-577. doi: 10.3934/proc.2011.2011.568

[12]

Jintao Wang, Desheng Li, Jinqiao Duan. On the shape Conley index theory of semiflows on complete metric spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1629-1647. doi: 10.3934/dcds.2016.36.1629

[13]

Masataka Shibata. Asymptotic shape of a solution for the Plasma problem in higher dimensional spaces. Communications on Pure and Applied Analysis, 2003, 2 (2) : 259-275. doi: 10.3934/cpaa.2003.2.259

[14]

Wen Huang, Jianya Liu, Ke Wang. Möbius disjointness for skew products on a circle and a nilmanifold. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3531-3553. doi: 10.3934/dcds.2021006

[15]

Xing Wang, Chang-Qi Tao, Guo-Ji Tang. Differential optimization in finite-dimensional spaces. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1495-1505. doi: 10.3934/jimo.2016.12.1495

[16]

Jin-Mun Jeong, Seong-Ho Cho. Identification problems of retarded differential systems in Hilbert spaces. Evolution Equations and Control Theory, 2017, 6 (1) : 77-91. doi: 10.3934/eect.2017005

[17]

Thomas Lorenz. Mutational inclusions: Differential inclusions in metric spaces. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 629-654. doi: 10.3934/dcdsb.2010.14.629

[18]

Harald Fripertinger. The number of invariant subspaces under a linear operator on finite vector spaces. Advances in Mathematics of Communications, 2011, 5 (2) : 407-416. doi: 10.3934/amc.2011.5.407

[19]

Daniel Genin, Serge Tabachnikov. On configuration spaces of plane polygons, sub-Riemannian geometry and periodic orbits of outer billiards. Journal of Modern Dynamics, 2007, 1 (2) : 155-173. doi: 10.3934/jmd.2007.1.155

[20]

Rich Stankewitz, Hiroki Sumi. Backward iteration algorithms for Julia sets of Möbius semigroups. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6475-6485. doi: 10.3934/dcds.2016079

2021 Impact Factor: 0.737

Metrics

  • PDF downloads (325)
  • HTML views (65)
  • Cited by (0)

Other articles
by authors

[Back to Top]