June  2017, 9(2): 207-225. doi: 10.3934/jgm.2017009

The group of diffeomorphisms of the circle: Reproducing kernels and analogs of spherical functions

1. 

Math. Dept., University of Vienna, Oskar-Morgenstern-Platz 1,1090 Wien, Austria

2. 

Institute for Theoretical and Experimental Physics (Moscow), Russia

3. 

MechMath. Dept., Moscow State University, Institute for Information Transmission (Moscow), Russia

* Corresponding author: Yury Neretin

Received  December 2015 Revised  August 2016 Published  May 2017

Fund Project: Supported by FWF grants P25142, P28421.

The group $\text{Diff}\left( {{S}^{1}} \right)$ of diffeomorphisms of the circle is an infinite dimensional analog of the real semisimple Lie groups $\text{U}(p,q)$, $\text{Sp}(2n,\mathbb{R})$, $\text{SO}^*(2n)$; the space $Ξ$ of univalent functions is an analog of the corresponding classical complex Cartan domains. We present explicit formulas for realizations of highest weight representations of $\text{Diff}\left( {{S}^{1}} \right)$ in the space of holomorphic functionals on $Ξ$, reproducing kernels on $Ξ$ determining inner products, and expressions ('canonical cocycles') replacing spherical functions.

Citation: Yury Neretin. The group of diffeomorphisms of the circle: Reproducing kernels and analogs of spherical functions. Journal of Geometric Mechanics, 2017, 9 (2) : 207-225. doi: 10.3934/jgm.2017009
References:
[1]

L. Ahlfors and A. Beurling, Conformal invariants and function-theoretic null-sets, Acta Math., 83 (1950), 101-129.  doi: 10.1007/BF02392634.

[2]

H. Airault and Yu. A. Neretin, On the action of Virasoro algebra on the space of univalent functions, Bull. Sci. Math., 132 (2008), 27-39.  doi: 10.1016/j.bulsci.2007.05.001.

[3]

F. A. Berezin, The Method of Second Quantization, Academic Press, New York-London, 1966.

[4]

M. J. Bowick and S. G. Rajeev, String theory as the Kähler geometry of loop space, Phys. Rev. Lett., 58 (1987), 535-538.  doi: 10.1103/PhysRevLett.58.535.

[5]

P. L. Duren, Univalent Functions, Springer-Verlag, 1983.

[6]

B. L. Feigin and D. B. Fuks, Skew-symmetric invariant differential operators on the line and Verma modules over the Virasoro algebra, Funct. Anal. Appl., 16 (1982), 47–63, 96.

[7]

B. L. Feigin and D. B. Fuks, Verma modules over a Virasoro algebr, Funct. Anal. Appl., 17 (1983), 91-92. 

[8]

B. L. Feigin and D. B. Fuchs10, Representations of the Virasoro algebra, in Representations of Lie groups and related topics (eds. A. M. Vershik, D. P. Zhelobenko), Gordon & Breach, 7 (1990), 465-554.

[9]

D. FriedanZ. Qiu and S. Shenker, Details of the nonunitarity proof for highest weight representations of the Virasoro algebra, Comm. Math. Phys., 107 (1986), 535-542.  doi: 10.1007/BF01205483.

[10]

D. B. Fuchs, Cohomologies of Infinite-Dimensional Lie Algebras, Moscow, 1984.

[11]

P. GoddardA. Kent and D. Olive, Unitary representations of the Virasoro and super-Virasoro algebras, Comm. Math. Phys., 103 (1986), 105-119.  doi: 10.1007/BF01464283.

[12]

G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, American Mathematical Society, Providence, R. I., 1969.

[13]

R. Goodman and N. Wallach, Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle, J. Reine Angew. Math., 347 (1984), 69-133.  doi: 10.1515/crll.1984.347.69.

[14]

H. Grunsky, Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen, Math. Zeitschrift, 45 (1939), 29-61.  doi: 10.1007/BF01580272.

[15]

V. G. Kac, Contravariant form for infinite-dimensional Lie algebras and superalgebras, in Group Theoretical Methods in Physics (Austin, Tex., 1978), Lecture Notes in Phys., Springer, Berlin, 94 (1979), 441-445.

[16]

A. A. Kirillov, Kähler structure on the K-orbits of a group of diffeomorphisms of the circle, Funct. Anal. Appl., 21 (1987), 42-45. 

[17]

A. A. Kirillov, Geometric approach to discrete series of unireps for Virasoro, J. Math. Pures Appl., 77 (1998), 735-746.  doi: 10.1016/S0021-7824(98)80007-X.

[18]

A. A. Kirillov and D. V. Yur', Kähler geometry of the infinite-dimensional homogeneous space $M=\mathrm{Diff}^+(S^1)/\mathrm {Rot}(S^1)$, Funct. Anal. Appl., 21 (1987), 35-46, 96. 

[19]

D. Marshall and S. Rohde, Convergence of a variant of the zipper algorithm for conformal mapping, SIAM J. Numer. Anal., 45 (2007), 2577-2609.  doi: 10.1137/060659119.

[20]

K. Mimachi and Y. Yamada, Singular vectors of the Virasoro algebra in terms of Jack symmetric polynomials, Comm. Math. Phys., 174 (1995), 447-455.  doi: 10.1007/BF02099610.

[21]

Yu. A. Neretin, Unitary representations with a highest weight of a group of diffeomorphisms of a circle, Funct. Anal. Appl., 17 (1983), 85-86. 

[22]

Yu. A. Neretin, Unitary Highest Weight Representations of Virasoro Algebra, (Russian) Ph. D. Moscow State University, MechMath Dept., 1983. Available from http://www.mat.univie.ac.at/~neretin/phd-neretin.pdf

[23]

Yu. A. Neretin, On the spinor representation of $\text{O}(∞,\mathbb{C})$, Soviet Math. Dokl., 34 (1987), 71-74. 

[24]

Yu. A. Neretin, On a complex semigroup containing the group of diffeomorphisms of the circle, Funct. Anal. Appl., 21 (1987), 82-83. 

[25]

Yu. A. Neretin, Holomorphic continuations of representations of the group of diffeomorphisms of the circle, (Russian), Mat. Sbornik, 180 (1989), 635-657; English transl. Math. USSR-Sb., 67 (1990), 75-97.

[26]

Yu. A. Neretin, Almost invariant structures and related representations of the group of diffeomorphisms of the circle, in Representations of Lie Groups and Related Topics (eds. A. M. Vershik, D. P. Zhelobenko), Gordon & Breach, 7 (1990), 245-267.

[27]

Yu. A. Neretin, Categories Enveloping Infinite-Dimensional Groups and Representations of Category of Riemannian Surfaces, Russian doctor degree thesis, Steklov Mathematical Institute, 1991, http://www.mat.univie.ac.at/~neretin/disser/disser.pdf

[28]

Yu. A. Neretin, Representations of Virasoro and affine Lie algebras, In Representation Theory and Noncommutative Harmonic Analysis, I, Encyclopaedia Math. Sci., Springer, Berlin, 22 (1994), 157-234. doi: 10.1007/978-3-662-03002-8_2.

[29]

Yu. A. Neretin, Categories of Symmetries and Infinite-Dimensional Groups, Oxford University Press, New York, 1996.

[30]

Yu. A. Neretin, Lectures on Gaussian Integral Operators And Classical Groups, European Mathematical Society (EMS), 2011. doi: 10.4171/080.

[31]

A. C. Schaeffer, D. C. Spencer, Coefficient Regions for Schlicht Functions, American Mathematical Society, New York, N. Y., 1950.

[32]

G. B. Segal, The definition of conformal field theory, in Differential Geometrical Methods in Theoretical Physics, 165-171, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 250, Kluwer Acad. Publ., Dordrecht, 1988.

[33]

E. Sharon and D. Mumford, 2d-shape analysis using conformal mapping, International Journal of Computer Vision, 70 (2006), 55-75.  doi: 10.1109/CVPR.2004.1315185.

[34]

P. Wojtaszczyk, Spaces of analytic functions with integral norm, in Handbook of the Geometry of Banach Spaces, North-Holland, Amsterdam, 2 (2003), 1671-1702. doi: 10.1016/S1874-5849(03)80046-3.

show all references

References:
[1]

L. Ahlfors and A. Beurling, Conformal invariants and function-theoretic null-sets, Acta Math., 83 (1950), 101-129.  doi: 10.1007/BF02392634.

[2]

H. Airault and Yu. A. Neretin, On the action of Virasoro algebra on the space of univalent functions, Bull. Sci. Math., 132 (2008), 27-39.  doi: 10.1016/j.bulsci.2007.05.001.

[3]

F. A. Berezin, The Method of Second Quantization, Academic Press, New York-London, 1966.

[4]

M. J. Bowick and S. G. Rajeev, String theory as the Kähler geometry of loop space, Phys. Rev. Lett., 58 (1987), 535-538.  doi: 10.1103/PhysRevLett.58.535.

[5]

P. L. Duren, Univalent Functions, Springer-Verlag, 1983.

[6]

B. L. Feigin and D. B. Fuks, Skew-symmetric invariant differential operators on the line and Verma modules over the Virasoro algebra, Funct. Anal. Appl., 16 (1982), 47–63, 96.

[7]

B. L. Feigin and D. B. Fuks, Verma modules over a Virasoro algebr, Funct. Anal. Appl., 17 (1983), 91-92. 

[8]

B. L. Feigin and D. B. Fuchs10, Representations of the Virasoro algebra, in Representations of Lie groups and related topics (eds. A. M. Vershik, D. P. Zhelobenko), Gordon & Breach, 7 (1990), 465-554.

[9]

D. FriedanZ. Qiu and S. Shenker, Details of the nonunitarity proof for highest weight representations of the Virasoro algebra, Comm. Math. Phys., 107 (1986), 535-542.  doi: 10.1007/BF01205483.

[10]

D. B. Fuchs, Cohomologies of Infinite-Dimensional Lie Algebras, Moscow, 1984.

[11]

P. GoddardA. Kent and D. Olive, Unitary representations of the Virasoro and super-Virasoro algebras, Comm. Math. Phys., 103 (1986), 105-119.  doi: 10.1007/BF01464283.

[12]

G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, American Mathematical Society, Providence, R. I., 1969.

[13]

R. Goodman and N. Wallach, Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle, J. Reine Angew. Math., 347 (1984), 69-133.  doi: 10.1515/crll.1984.347.69.

[14]

H. Grunsky, Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen, Math. Zeitschrift, 45 (1939), 29-61.  doi: 10.1007/BF01580272.

[15]

V. G. Kac, Contravariant form for infinite-dimensional Lie algebras and superalgebras, in Group Theoretical Methods in Physics (Austin, Tex., 1978), Lecture Notes in Phys., Springer, Berlin, 94 (1979), 441-445.

[16]

A. A. Kirillov, Kähler structure on the K-orbits of a group of diffeomorphisms of the circle, Funct. Anal. Appl., 21 (1987), 42-45. 

[17]

A. A. Kirillov, Geometric approach to discrete series of unireps for Virasoro, J. Math. Pures Appl., 77 (1998), 735-746.  doi: 10.1016/S0021-7824(98)80007-X.

[18]

A. A. Kirillov and D. V. Yur', Kähler geometry of the infinite-dimensional homogeneous space $M=\mathrm{Diff}^+(S^1)/\mathrm {Rot}(S^1)$, Funct. Anal. Appl., 21 (1987), 35-46, 96. 

[19]

D. Marshall and S. Rohde, Convergence of a variant of the zipper algorithm for conformal mapping, SIAM J. Numer. Anal., 45 (2007), 2577-2609.  doi: 10.1137/060659119.

[20]

K. Mimachi and Y. Yamada, Singular vectors of the Virasoro algebra in terms of Jack symmetric polynomials, Comm. Math. Phys., 174 (1995), 447-455.  doi: 10.1007/BF02099610.

[21]

Yu. A. Neretin, Unitary representations with a highest weight of a group of diffeomorphisms of a circle, Funct. Anal. Appl., 17 (1983), 85-86. 

[22]

Yu. A. Neretin, Unitary Highest Weight Representations of Virasoro Algebra, (Russian) Ph. D. Moscow State University, MechMath Dept., 1983. Available from http://www.mat.univie.ac.at/~neretin/phd-neretin.pdf

[23]

Yu. A. Neretin, On the spinor representation of $\text{O}(∞,\mathbb{C})$, Soviet Math. Dokl., 34 (1987), 71-74. 

[24]

Yu. A. Neretin, On a complex semigroup containing the group of diffeomorphisms of the circle, Funct. Anal. Appl., 21 (1987), 82-83. 

[25]

Yu. A. Neretin, Holomorphic continuations of representations of the group of diffeomorphisms of the circle, (Russian), Mat. Sbornik, 180 (1989), 635-657; English transl. Math. USSR-Sb., 67 (1990), 75-97.

[26]

Yu. A. Neretin, Almost invariant structures and related representations of the group of diffeomorphisms of the circle, in Representations of Lie Groups and Related Topics (eds. A. M. Vershik, D. P. Zhelobenko), Gordon & Breach, 7 (1990), 245-267.

[27]

Yu. A. Neretin, Categories Enveloping Infinite-Dimensional Groups and Representations of Category of Riemannian Surfaces, Russian doctor degree thesis, Steklov Mathematical Institute, 1991, http://www.mat.univie.ac.at/~neretin/disser/disser.pdf

[28]

Yu. A. Neretin, Representations of Virasoro and affine Lie algebras, In Representation Theory and Noncommutative Harmonic Analysis, I, Encyclopaedia Math. Sci., Springer, Berlin, 22 (1994), 157-234. doi: 10.1007/978-3-662-03002-8_2.

[29]

Yu. A. Neretin, Categories of Symmetries and Infinite-Dimensional Groups, Oxford University Press, New York, 1996.

[30]

Yu. A. Neretin, Lectures on Gaussian Integral Operators And Classical Groups, European Mathematical Society (EMS), 2011. doi: 10.4171/080.

[31]

A. C. Schaeffer, D. C. Spencer, Coefficient Regions for Schlicht Functions, American Mathematical Society, New York, N. Y., 1950.

[32]

G. B. Segal, The definition of conformal field theory, in Differential Geometrical Methods in Theoretical Physics, 165-171, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 250, Kluwer Acad. Publ., Dordrecht, 1988.

[33]

E. Sharon and D. Mumford, 2d-shape analysis using conformal mapping, International Journal of Computer Vision, 70 (2006), 55-75.  doi: 10.1109/CVPR.2004.1315185.

[34]

P. Wojtaszczyk, Spaces of analytic functions with integral norm, in Handbook of the Geometry of Banach Spaces, North-Holland, Amsterdam, 2 (2003), 1671-1702. doi: 10.1016/S1874-5849(03)80046-3.

[1]

Ali Akgül, Mustafa Inc, Esra Karatas. Reproducing kernel functions for difference equations. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1055-1064. doi: 10.3934/dcdss.2015.8.1055

[2]

Kaitlyn (Voccola) Muller. A reproducing kernel Hilbert space framework for inverse scattering problems within the Born approximation. Inverse Problems and Imaging, 2019, 13 (6) : 1327-1348. doi: 10.3934/ipi.2019058

[3]

Ali Akgül. A new application of the reproducing kernel method. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2041-2053. doi: 10.3934/dcdss.2020261

[4]

Pengliang Xu, Xiaomin Tang. Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, 2021, 29 (4) : 2771-2789. doi: 10.3934/era.2021013

[5]

Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, 2021, 29 (4) : 2673-2685. doi: 10.3934/era.2021008

[6]

Xiaomei Chen, Xiaohui Yu. Liouville type theorem for Hartree-Fock Equation on half space. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2079-2100. doi: 10.3934/cpaa.2022050

[7]

Ying Lin, Rongrong Lin, Qi Ye. Sparse regularized learning in the reproducing kernel banach spaces with the $ \ell^1 $ norm. Mathematical Foundations of Computing, 2020, 3 (3) : 205-218. doi: 10.3934/mfc.2020020

[8]

Gregory Beylkin, Lucas Monzón. Efficient representation and accurate evaluation of oscillatory integrals and functions. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4077-4100. doi: 10.3934/dcds.2016.36.4077

[9]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3043-3054. doi: 10.3934/dcdss.2020463

[10]

Ying-Chieh Lin, Tsung-Fang Wu. On the semilinear fractional elliptic equations with singular weight functions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2067-2084. doi: 10.3934/dcdsb.2020325

[11]

M. P. de Oliveira. On 3-graded Lie algebras, Jordan pairs and the canonical kernel function. Electronic Research Announcements, 2003, 9: 142-151.

[12]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3337-3349. doi: 10.3934/dcdss.2020443

[13]

Chady Ghnatios, Guangtao Xu, Adrien Leygue, Michel Visonneau, Francisco Chinesta, Alain Cimetiere. On the space separated representation when addressing the solution of PDE in complex domains. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 475-500. doi: 10.3934/dcdss.2016008

[14]

Yunbai Cao, Chanwoo Kim. Glassey-Strauss representation of Vlasov-Maxwell systems in a Half Space. Kinetic and Related Models, 2022, 15 (3) : 385-401. doi: 10.3934/krm.2021034

[15]

Steven G. Krantz and Marco M. Peloso. New results on the Bergman kernel of the worm domain in complex space. Electronic Research Announcements, 2007, 14: 35-41. doi: 10.3934/era.2007.14.35

[16]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems and Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[17]

Wenxian Shen, Xiaoxia Xie. Spectraltheory for nonlocal dispersal operators with time periodic indefinite weight functions and applications. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1023-1047. doi: 10.3934/dcdsb.2017051

[18]

Bram van Asch, Frans Martens. Lee weight enumerators of self-dual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393-402. doi: 10.3934/amc.2008.2.393

[19]

Thomas W. Cusick, Younhwan Cheon. The weight recursions for the 2-rotation symmetric quartic Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021011

[20]

Xiyou Cheng, Zhaosheng Feng, Lei Wei. Existence and multiplicity of nontrivial solutions for a semilinear biharmonic equation with weight functions. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3067-3083. doi: 10.3934/dcdss.2021078

2020 Impact Factor: 0.857

Metrics

  • PDF downloads (107)
  • HTML views (84)
  • Cited by (0)

Other articles
by authors

[Back to Top]