June  2017, 9(2): 207-225. doi: 10.3934/jgm.2017009

The group of diffeomorphisms of the circle: Reproducing kernels and analogs of spherical functions

1. 

Math. Dept., University of Vienna, Oskar-Morgenstern-Platz 1,1090 Wien, Austria

2. 

Institute for Theoretical and Experimental Physics (Moscow), Russia

3. 

MechMath. Dept., Moscow State University, Institute for Information Transmission (Moscow), Russia

* Corresponding author: Yury Neretin

Received  December 2015 Revised  August 2016 Published  May 2017

Fund Project: Supported by FWF grants P25142, P28421

The group $\text{Diff}\left( {{S}^{1}} \right)$ of diffeomorphisms of the circle is an infinite dimensional analog of the real semisimple Lie groups $\text{U}(p,q)$, $\text{Sp}(2n,\mathbb{R})$, $\text{SO}^*(2n)$; the space $Ξ$ of univalent functions is an analog of the corresponding classical complex Cartan domains. We present explicit formulas for realizations of highest weight representations of $\text{Diff}\left( {{S}^{1}} \right)$ in the space of holomorphic functionals on $Ξ$, reproducing kernels on $Ξ$ determining inner products, and expressions ('canonical cocycles') replacing spherical functions.

Citation: Yury Neretin. The group of diffeomorphisms of the circle: Reproducing kernels and analogs of spherical functions. Journal of Geometric Mechanics, 2017, 9 (2) : 207-225. doi: 10.3934/jgm.2017009
References:
[1]

L. Ahlfors and A. Beurling, Conformal invariants and function-theoretic null-sets, Acta Math., 83 (1950), 101-129.  doi: 10.1007/BF02392634.  Google Scholar

[2]

H. Airault and Yu. A. Neretin, On the action of Virasoro algebra on the space of univalent functions, Bull. Sci. Math., 132 (2008), 27-39.  doi: 10.1016/j.bulsci.2007.05.001.  Google Scholar

[3]

F. A. Berezin, The Method of Second Quantization, Academic Press, New York-London, 1966.  Google Scholar

[4]

M. J. Bowick and S. G. Rajeev, String theory as the Kähler geometry of loop space, Phys. Rev. Lett., 58 (1987), 535-538.  doi: 10.1103/PhysRevLett.58.535.  Google Scholar

[5]

P. L. Duren, Univalent Functions, Springer-Verlag, 1983.  Google Scholar

[6]

B. L. Feigin and D. B. Fuks, Skew-symmetric invariant differential operators on the line and Verma modules over the Virasoro algebra, Funct. Anal. Appl., 16 (1982), 47–63, 96.  Google Scholar

[7]

B. L. Feigin and D. B. Fuks, Verma modules over a Virasoro algebr, Funct. Anal. Appl., 17 (1983), 91-92.   Google Scholar

[8]

B. L. Feigin and D. B. Fuchs10, Representations of the Virasoro algebra, in Representations of Lie groups and related topics (eds. A. M. Vershik, D. P. Zhelobenko), Gordon & Breach, 7 (1990), 465-554.  Google Scholar

[9]

D. FriedanZ. Qiu and S. Shenker, Details of the nonunitarity proof for highest weight representations of the Virasoro algebra, Comm. Math. Phys., 107 (1986), 535-542.  doi: 10.1007/BF01205483.  Google Scholar

[10]

D. B. Fuchs, Cohomologies of Infinite-Dimensional Lie Algebras, Moscow, 1984.  Google Scholar

[11]

P. GoddardA. Kent and D. Olive, Unitary representations of the Virasoro and super-Virasoro algebras, Comm. Math. Phys., 103 (1986), 105-119.  doi: 10.1007/BF01464283.  Google Scholar

[12]

G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, American Mathematical Society, Providence, R. I., 1969.  Google Scholar

[13]

R. Goodman and N. Wallach, Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle, J. Reine Angew. Math., 347 (1984), 69-133.  doi: 10.1515/crll.1984.347.69.  Google Scholar

[14]

H. Grunsky, Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen, Math. Zeitschrift, 45 (1939), 29-61.  doi: 10.1007/BF01580272.  Google Scholar

[15]

V. G. Kac, Contravariant form for infinite-dimensional Lie algebras and superalgebras, in Group Theoretical Methods in Physics (Austin, Tex., 1978), Lecture Notes in Phys., Springer, Berlin, 94 (1979), 441-445. Google Scholar

[16]

A. A. Kirillov, Kähler structure on the K-orbits of a group of diffeomorphisms of the circle, Funct. Anal. Appl., 21 (1987), 42-45.   Google Scholar

[17]

A. A. Kirillov, Geometric approach to discrete series of unireps for Virasoro, J. Math. Pures Appl., 77 (1998), 735-746.  doi: 10.1016/S0021-7824(98)80007-X.  Google Scholar

[18]

A. A. Kirillov and D. V. Yur', Kähler geometry of the infinite-dimensional homogeneous space $M=\mathrm{Diff}^+(S^1)/\mathrm {Rot}(S^1)$, Funct. Anal. Appl., 21 (1987), 35-46, 96.   Google Scholar

[19]

D. Marshall and S. Rohde, Convergence of a variant of the zipper algorithm for conformal mapping, SIAM J. Numer. Anal., 45 (2007), 2577-2609.  doi: 10.1137/060659119.  Google Scholar

[20]

K. Mimachi and Y. Yamada, Singular vectors of the Virasoro algebra in terms of Jack symmetric polynomials, Comm. Math. Phys., 174 (1995), 447-455.  doi: 10.1007/BF02099610.  Google Scholar

[21]

Yu. A. Neretin, Unitary representations with a highest weight of a group of diffeomorphisms of a circle, Funct. Anal. Appl., 17 (1983), 85-86.   Google Scholar

[22]

Yu. A. Neretin, Unitary Highest Weight Representations of Virasoro Algebra, (Russian) Ph. D. Moscow State University, MechMath Dept., 1983. Available from http://www.mat.univie.ac.at/~neretin/phd-neretin.pdf Google Scholar

[23]

Yu. A. Neretin, On the spinor representation of $\text{O}(∞,\mathbb{C})$, Soviet Math. Dokl., 34 (1987), 71-74.   Google Scholar

[24]

Yu. A. Neretin, On a complex semigroup containing the group of diffeomorphisms of the circle, Funct. Anal. Appl., 21 (1987), 82-83.   Google Scholar

[25]

Yu. A. Neretin, Holomorphic continuations of representations of the group of diffeomorphisms of the circle, (Russian), Mat. Sbornik, 180 (1989), 635-657; English transl. Math. USSR-Sb., 67 (1990), 75-97.  Google Scholar

[26]

Yu. A. Neretin, Almost invariant structures and related representations of the group of diffeomorphisms of the circle, in Representations of Lie Groups and Related Topics (eds. A. M. Vershik, D. P. Zhelobenko), Gordon & Breach, 7 (1990), 245-267.  Google Scholar

[27]

Yu. A. Neretin, Categories Enveloping Infinite-Dimensional Groups and Representations of Category of Riemannian Surfaces, Russian doctor degree thesis, Steklov Mathematical Institute, 1991, http://www.mat.univie.ac.at/~neretin/disser/disser.pdf Google Scholar

[28]

Yu. A. Neretin, Representations of Virasoro and affine Lie algebras, In Representation Theory and Noncommutative Harmonic Analysis, I, Encyclopaedia Math. Sci., Springer, Berlin, 22 (1994), 157-234. doi: 10.1007/978-3-662-03002-8_2.  Google Scholar

[29]

Yu. A. Neretin, Categories of Symmetries and Infinite-Dimensional Groups, Oxford University Press, New York, 1996.  Google Scholar

[30]

Yu. A. Neretin, Lectures on Gaussian Integral Operators And Classical Groups, European Mathematical Society (EMS), 2011. doi: 10.4171/080.  Google Scholar

[31]

A. C. Schaeffer, D. C. Spencer, Coefficient Regions for Schlicht Functions, American Mathematical Society, New York, N. Y., 1950.  Google Scholar

[32]

G. B. Segal, The definition of conformal field theory, in Differential Geometrical Methods in Theoretical Physics, 165-171, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 250, Kluwer Acad. Publ., Dordrecht, 1988.  Google Scholar

[33]

E. Sharon and D. Mumford, 2d-shape analysis using conformal mapping, International Journal of Computer Vision, 70 (2006), 55-75.  doi: 10.1109/CVPR.2004.1315185.  Google Scholar

[34]

P. Wojtaszczyk, Spaces of analytic functions with integral norm, in Handbook of the Geometry of Banach Spaces, North-Holland, Amsterdam, 2 (2003), 1671-1702. doi: 10.1016/S1874-5849(03)80046-3.  Google Scholar

show all references

References:
[1]

L. Ahlfors and A. Beurling, Conformal invariants and function-theoretic null-sets, Acta Math., 83 (1950), 101-129.  doi: 10.1007/BF02392634.  Google Scholar

[2]

H. Airault and Yu. A. Neretin, On the action of Virasoro algebra on the space of univalent functions, Bull. Sci. Math., 132 (2008), 27-39.  doi: 10.1016/j.bulsci.2007.05.001.  Google Scholar

[3]

F. A. Berezin, The Method of Second Quantization, Academic Press, New York-London, 1966.  Google Scholar

[4]

M. J. Bowick and S. G. Rajeev, String theory as the Kähler geometry of loop space, Phys. Rev. Lett., 58 (1987), 535-538.  doi: 10.1103/PhysRevLett.58.535.  Google Scholar

[5]

P. L. Duren, Univalent Functions, Springer-Verlag, 1983.  Google Scholar

[6]

B. L. Feigin and D. B. Fuks, Skew-symmetric invariant differential operators on the line and Verma modules over the Virasoro algebra, Funct. Anal. Appl., 16 (1982), 47–63, 96.  Google Scholar

[7]

B. L. Feigin and D. B. Fuks, Verma modules over a Virasoro algebr, Funct. Anal. Appl., 17 (1983), 91-92.   Google Scholar

[8]

B. L. Feigin and D. B. Fuchs10, Representations of the Virasoro algebra, in Representations of Lie groups and related topics (eds. A. M. Vershik, D. P. Zhelobenko), Gordon & Breach, 7 (1990), 465-554.  Google Scholar

[9]

D. FriedanZ. Qiu and S. Shenker, Details of the nonunitarity proof for highest weight representations of the Virasoro algebra, Comm. Math. Phys., 107 (1986), 535-542.  doi: 10.1007/BF01205483.  Google Scholar

[10]

D. B. Fuchs, Cohomologies of Infinite-Dimensional Lie Algebras, Moscow, 1984.  Google Scholar

[11]

P. GoddardA. Kent and D. Olive, Unitary representations of the Virasoro and super-Virasoro algebras, Comm. Math. Phys., 103 (1986), 105-119.  doi: 10.1007/BF01464283.  Google Scholar

[12]

G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, American Mathematical Society, Providence, R. I., 1969.  Google Scholar

[13]

R. Goodman and N. Wallach, Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle, J. Reine Angew. Math., 347 (1984), 69-133.  doi: 10.1515/crll.1984.347.69.  Google Scholar

[14]

H. Grunsky, Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen, Math. Zeitschrift, 45 (1939), 29-61.  doi: 10.1007/BF01580272.  Google Scholar

[15]

V. G. Kac, Contravariant form for infinite-dimensional Lie algebras and superalgebras, in Group Theoretical Methods in Physics (Austin, Tex., 1978), Lecture Notes in Phys., Springer, Berlin, 94 (1979), 441-445. Google Scholar

[16]

A. A. Kirillov, Kähler structure on the K-orbits of a group of diffeomorphisms of the circle, Funct. Anal. Appl., 21 (1987), 42-45.   Google Scholar

[17]

A. A. Kirillov, Geometric approach to discrete series of unireps for Virasoro, J. Math. Pures Appl., 77 (1998), 735-746.  doi: 10.1016/S0021-7824(98)80007-X.  Google Scholar

[18]

A. A. Kirillov and D. V. Yur', Kähler geometry of the infinite-dimensional homogeneous space $M=\mathrm{Diff}^+(S^1)/\mathrm {Rot}(S^1)$, Funct. Anal. Appl., 21 (1987), 35-46, 96.   Google Scholar

[19]

D. Marshall and S. Rohde, Convergence of a variant of the zipper algorithm for conformal mapping, SIAM J. Numer. Anal., 45 (2007), 2577-2609.  doi: 10.1137/060659119.  Google Scholar

[20]

K. Mimachi and Y. Yamada, Singular vectors of the Virasoro algebra in terms of Jack symmetric polynomials, Comm. Math. Phys., 174 (1995), 447-455.  doi: 10.1007/BF02099610.  Google Scholar

[21]

Yu. A. Neretin, Unitary representations with a highest weight of a group of diffeomorphisms of a circle, Funct. Anal. Appl., 17 (1983), 85-86.   Google Scholar

[22]

Yu. A. Neretin, Unitary Highest Weight Representations of Virasoro Algebra, (Russian) Ph. D. Moscow State University, MechMath Dept., 1983. Available from http://www.mat.univie.ac.at/~neretin/phd-neretin.pdf Google Scholar

[23]

Yu. A. Neretin, On the spinor representation of $\text{O}(∞,\mathbb{C})$, Soviet Math. Dokl., 34 (1987), 71-74.   Google Scholar

[24]

Yu. A. Neretin, On a complex semigroup containing the group of diffeomorphisms of the circle, Funct. Anal. Appl., 21 (1987), 82-83.   Google Scholar

[25]

Yu. A. Neretin, Holomorphic continuations of representations of the group of diffeomorphisms of the circle, (Russian), Mat. Sbornik, 180 (1989), 635-657; English transl. Math. USSR-Sb., 67 (1990), 75-97.  Google Scholar

[26]

Yu. A. Neretin, Almost invariant structures and related representations of the group of diffeomorphisms of the circle, in Representations of Lie Groups and Related Topics (eds. A. M. Vershik, D. P. Zhelobenko), Gordon & Breach, 7 (1990), 245-267.  Google Scholar

[27]

Yu. A. Neretin, Categories Enveloping Infinite-Dimensional Groups and Representations of Category of Riemannian Surfaces, Russian doctor degree thesis, Steklov Mathematical Institute, 1991, http://www.mat.univie.ac.at/~neretin/disser/disser.pdf Google Scholar

[28]

Yu. A. Neretin, Representations of Virasoro and affine Lie algebras, In Representation Theory and Noncommutative Harmonic Analysis, I, Encyclopaedia Math. Sci., Springer, Berlin, 22 (1994), 157-234. doi: 10.1007/978-3-662-03002-8_2.  Google Scholar

[29]

Yu. A. Neretin, Categories of Symmetries and Infinite-Dimensional Groups, Oxford University Press, New York, 1996.  Google Scholar

[30]

Yu. A. Neretin, Lectures on Gaussian Integral Operators And Classical Groups, European Mathematical Society (EMS), 2011. doi: 10.4171/080.  Google Scholar

[31]

A. C. Schaeffer, D. C. Spencer, Coefficient Regions for Schlicht Functions, American Mathematical Society, New York, N. Y., 1950.  Google Scholar

[32]

G. B. Segal, The definition of conformal field theory, in Differential Geometrical Methods in Theoretical Physics, 165-171, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 250, Kluwer Acad. Publ., Dordrecht, 1988.  Google Scholar

[33]

E. Sharon and D. Mumford, 2d-shape analysis using conformal mapping, International Journal of Computer Vision, 70 (2006), 55-75.  doi: 10.1109/CVPR.2004.1315185.  Google Scholar

[34]

P. Wojtaszczyk, Spaces of analytic functions with integral norm, in Handbook of the Geometry of Banach Spaces, North-Holland, Amsterdam, 2 (2003), 1671-1702. doi: 10.1016/S1874-5849(03)80046-3.  Google Scholar

[1]

Ali Akgül, Mustafa Inc, Esra Karatas. Reproducing kernel functions for difference equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1055-1064. doi: 10.3934/dcdss.2015.8.1055

[2]

Kaitlyn (Voccola) Muller. A reproducing kernel Hilbert space framework for inverse scattering problems within the Born approximation. Inverse Problems & Imaging, 2019, 13 (6) : 1327-1348. doi: 10.3934/ipi.2019058

[3]

Gregory Beylkin, Lucas Monzón. Efficient representation and accurate evaluation of oscillatory integrals and functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4077-4100. doi: 10.3934/dcds.2016.36.4077

[4]

M. P. de Oliveira. On 3-graded Lie algebras, Jordan pairs and the canonical kernel function. Electronic Research Announcements, 2003, 9: 142-151.

[5]

Chady Ghnatios, Guangtao Xu, Adrien Leygue, Michel Visonneau, Francisco Chinesta, Alain Cimetiere. On the space separated representation when addressing the solution of PDE in complex domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 475-500. doi: 10.3934/dcdss.2016008

[6]

Wenxian Shen, Xiaoxia Xie. Spectraltheory for nonlocal dispersal operators with time periodic indefinite weight functions and applications. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1023-1047. doi: 10.3934/dcdsb.2017051

[7]

Bram van Asch, Frans Martens. Lee weight enumerators of self-dual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393-402. doi: 10.3934/amc.2008.2.393

[8]

Steven G. Krantz and Marco M. Peloso. New results on the Bergman kernel of the worm domain in complex space. Electronic Research Announcements, 2007, 14: 35-41. doi: 10.3934/era.2007.14.35

[9]

Bai-Ni Guo, Feng Qi. Properties and applications of a function involving exponential functions. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1231-1249. doi: 10.3934/cpaa.2009.8.1231

[10]

Behrouz Kheirfam. A full Nesterov-Todd step infeasible interior-point algorithm for symmetric optimization based on a specific kernel function. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 601-614. doi: 10.3934/naco.2013.3.601

[11]

Siqi Li, Weiyi Qian. Analysis of complexity of primal-dual interior-point algorithms based on a new kernel function for linear optimization. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 37-46. doi: 10.3934/naco.2015.5.37

[12]

M. L. Miotto. Multiple solutions for elliptic problem in $\mathbb{R}^N$ with critical Sobolev exponent and weight function. Communications on Pure & Applied Analysis, 2010, 9 (1) : 233-248. doi: 10.3934/cpaa.2010.9.233

[13]

Tsung-Fang Wu. On semilinear elliptic equations involving critical Sobolev exponents and sign-changing weight function. Communications on Pure & Applied Analysis, 2008, 7 (2) : 383-405. doi: 10.3934/cpaa.2008.7.383

[14]

Olaf Klein. On the representation of hysteresis operators acting on vector-valued, left-continuous and piecewise monotaffine and continuous functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2591-2614. doi: 10.3934/dcds.2015.35.2591

[15]

Ken Abe. Some uniqueness result of the Stokes flow in a half space in a space of bounded functions. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 887-900. doi: 10.3934/dcdss.2014.7.887

[16]

Yanqin Bai, Pengfei Ma, Jing Zhang. A polynomial-time interior-point method for circular cone programming based on kernel functions. Journal of Industrial & Management Optimization, 2016, 12 (2) : 739-756. doi: 10.3934/jimo.2016.12.739

[17]

David Keyes. $\mathbb F_p$-codes, theta functions and the Hamming weight MacWilliams identity. Advances in Mathematics of Communications, 2012, 6 (4) : 401-418. doi: 10.3934/amc.2012.6.401

[18]

Yuanxiao Li, Ming Mei, Kaijun Zhang. Existence of multiple nontrivial solutions for a $p$-Kirchhoff type elliptic problem involving sign-changing weight functions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 883-908. doi: 10.3934/dcdsb.2016.21.883

[19]

Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101

[20]

Josef Diblík, Zdeněk Svoboda. Asymptotic properties of delayed matrix exponential functions via Lambert function. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 123-144. doi: 10.3934/dcdsb.2018008

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (11)
  • HTML views (27)
  • Cited by (0)

Other articles
by authors

[Back to Top]