
-
Previous Article
Complete spelling rules for the Monster tower over three-space
- JGM Home
- This Issue
-
Next Article
About simple variational splines from the Hamiltonian viewpoint
Probability measures on infinite-dimensional Stiefel manifolds
1. | Microsoft Deutschland GmbH, Germany |
2. | Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italia |
An interest in infinite-dimensional manifolds has recently appeared in Shape Theory. An example is the Stiefel manifold, that has been proposed as a model for the space of immersed curves in the plane. It may be useful to define probabilities on such manifolds.
Suppose that $H$ is an infinite-dimensional separable Hilbert space.
Let $S\subset H$ be the sphere, $p\in S$. Let $\mu$ be the push forward of a Gaussian measure $\gamma$ from $T_p S$ onto $S$ using the exponential map. Let $v\in T_p S$ be a Cameron-Martin vector for $\gamma$; let $R$ be a rotation of $S$ in the direction $v$, and $\nu=R_\# \mu$ be the rotated measure. Then $\mu,\nu$ are mutually singular. This is counterintuitive, since the translation of a Gaussian measure in a Cameron-Martin direction produces equivalent measures.
Let $\gamma$ be a Gaussian measure on $H$; then there exists a smooth closed manifold $M\subset H$ such that the projection of $H$ to the nearest point on $M$ is not well defined for points in a set of positive $\gamma$ measure.
Instead it is possible to project a Gaussian measure to a Stiefel manifold to define a probability.
References:
[1] |
L. Ambrosio, N. Gigli and G. Savaré,
Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. |
[2] |
C. J. Atkin,
The Hopf-Rinow theorem is false in infinite dimensions, Bull. London Math. Soc., 7 (1975), 261-266.
doi: 10.1112/blms/7.3.261. |
[3] |
V. I. Bogachev, Measure Theory. Vol. Ⅰ, Ⅱ, Springer-Verlag, Berlin, 2007, URL http://dx.doi.org/10.1007/978-3-540-34514-5.
doi: 10.1007/978-3-540-34514-5. |
[4] |
V. I. Bogachev,
Gaussian Measures, vol. 62 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1998.
doi: 10.1090/surv/062. |
[5] | |
[6] |
D. Burago, Y. Burago and S. Ivanov,
A Course in Metric Geometry, vol. 33 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/033. |
[7] |
G. Da Prato,
An Introduction to Infinite-Dimensional Analysis, Springer, 2006.
doi: 10.1007/3-540-29021-4. |
[8] |
M. P. do Carmo,
Riemannian Geometry, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1992, Translated from the second Portuguese edition by Francis Flaherty.
doi: 10.1007/978-1-4757-2201-7. |
[9] |
A. Edelman, T. A. Arias and S. T. Smith,
The geometry of algorithms with orthogonality constraints,
SIAM J. Matrix Anal. Appl. , 20 (1999), 303-353, URL http://dx.doi.org/10.1137/S0895479895290954.
doi: 10.1137/S0895479895290954. |
[10] |
H. Federer,
Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. |
[11] |
N. Grossman,
Hilbert manifolds without epiconjugate points, Proc. Amer. Math. Soc., 16 (1965), 1365-1371.
doi: 10.1090/S0002-9939-1965-0188943-7. |
[12] |
P. Harms and A. Mennucci,
Geodesics in infinite dimensional Stiefel and Grassmann manifolds,
Comptes rendus -Mathématique, 350 (2012), 773-776, URL http://cvgmt.sns.it/paper/336/.
doi: 10.1016/j.crma.2012.08.010. |
[13] |
D. G. Kendall,
The diffusion of shape, Advances in applied probability, (), 428-430.
|
[14] |
D. G. Kendall,
Shape manifolds, procrustean metrics, and complex projective spaces, Bulletin of the London Mathematical Society, 16 (1984), 81-121.
doi: 10.1112/blms/16.2.81. |
[15] |
A. N. Kolmogorov,
La transformation de laplace dans les espaces linéaires, CR Acad. Sci. Paris, 200 (1935), 1717-1718.
|
[16] |
S. Lang,
Fundamentals of Differential Geometry, vol. 191 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-0541-8. |
[17] |
H. Le and D. G. Kendall,
The Riemannian structure of Euclidean shape spaces: A novel environment for statistics, The Annals of Statistics, 21 (1993), 1225-1271.
doi: 10.1214/aos/1176349259. |
[18] |
C. Mantegazza and A. C. Mennucci,
Hamilton-Jacobi equations and distance functions on Riemannian manifolds, Applied Math. and Optim., 47 (2003), 1-25.
doi: 10.1007/s00245-002-0736-4. |
[19] |
A. C. G. Mennucci,
Regularity and variationality of solutions to Hamilton-Jacobi equations. Ⅰ. Regularity,
ESAIM Control Optim. Calc. Var. , 10 (2004), 426-451 (electronic), URL http://dx.doi.org/10.1051/cocv:2004014.
doi: 10.1051/cocv:2004014. |
[20] |
G. Sundaramoorthi, A. Mennucci, S. Soatto and A. Yezzi,
A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering,
SIAM J. Imaging Sci. , 4 (2011), 109-145, URL http://dx.doi.org/10.1137/090781139.
doi: 10.1137/090781139. |
[21] |
L. Younes,
Computable elastic distances between shapes,
SIAM J. Appl. Math. , 58 (1998), 565-586 (electronic), URL http://dx.doi.org/10.1137/S0036139995287685.
doi: 10.1137/S0036139995287685. |
[22] |
L. Younes, P. W. Michor, J. Shah and D. Mumford,
A metric on shape space with explicit geodesics,
Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. , 19 (2008), 25-57, URL http://dx.doi.org/10.4171/RLM/506.
doi: 10.4171/RLM/506. |
show all references
References:
[1] |
L. Ambrosio, N. Gigli and G. Savaré,
Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. |
[2] |
C. J. Atkin,
The Hopf-Rinow theorem is false in infinite dimensions, Bull. London Math. Soc., 7 (1975), 261-266.
doi: 10.1112/blms/7.3.261. |
[3] |
V. I. Bogachev, Measure Theory. Vol. Ⅰ, Ⅱ, Springer-Verlag, Berlin, 2007, URL http://dx.doi.org/10.1007/978-3-540-34514-5.
doi: 10.1007/978-3-540-34514-5. |
[4] |
V. I. Bogachev,
Gaussian Measures, vol. 62 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1998.
doi: 10.1090/surv/062. |
[5] | |
[6] |
D. Burago, Y. Burago and S. Ivanov,
A Course in Metric Geometry, vol. 33 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/033. |
[7] |
G. Da Prato,
An Introduction to Infinite-Dimensional Analysis, Springer, 2006.
doi: 10.1007/3-540-29021-4. |
[8] |
M. P. do Carmo,
Riemannian Geometry, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1992, Translated from the second Portuguese edition by Francis Flaherty.
doi: 10.1007/978-1-4757-2201-7. |
[9] |
A. Edelman, T. A. Arias and S. T. Smith,
The geometry of algorithms with orthogonality constraints,
SIAM J. Matrix Anal. Appl. , 20 (1999), 303-353, URL http://dx.doi.org/10.1137/S0895479895290954.
doi: 10.1137/S0895479895290954. |
[10] |
H. Federer,
Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. |
[11] |
N. Grossman,
Hilbert manifolds without epiconjugate points, Proc. Amer. Math. Soc., 16 (1965), 1365-1371.
doi: 10.1090/S0002-9939-1965-0188943-7. |
[12] |
P. Harms and A. Mennucci,
Geodesics in infinite dimensional Stiefel and Grassmann manifolds,
Comptes rendus -Mathématique, 350 (2012), 773-776, URL http://cvgmt.sns.it/paper/336/.
doi: 10.1016/j.crma.2012.08.010. |
[13] |
D. G. Kendall,
The diffusion of shape, Advances in applied probability, (), 428-430.
|
[14] |
D. G. Kendall,
Shape manifolds, procrustean metrics, and complex projective spaces, Bulletin of the London Mathematical Society, 16 (1984), 81-121.
doi: 10.1112/blms/16.2.81. |
[15] |
A. N. Kolmogorov,
La transformation de laplace dans les espaces linéaires, CR Acad. Sci. Paris, 200 (1935), 1717-1718.
|
[16] |
S. Lang,
Fundamentals of Differential Geometry, vol. 191 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-0541-8. |
[17] |
H. Le and D. G. Kendall,
The Riemannian structure of Euclidean shape spaces: A novel environment for statistics, The Annals of Statistics, 21 (1993), 1225-1271.
doi: 10.1214/aos/1176349259. |
[18] |
C. Mantegazza and A. C. Mennucci,
Hamilton-Jacobi equations and distance functions on Riemannian manifolds, Applied Math. and Optim., 47 (2003), 1-25.
doi: 10.1007/s00245-002-0736-4. |
[19] |
A. C. G. Mennucci,
Regularity and variationality of solutions to Hamilton-Jacobi equations. Ⅰ. Regularity,
ESAIM Control Optim. Calc. Var. , 10 (2004), 426-451 (electronic), URL http://dx.doi.org/10.1051/cocv:2004014.
doi: 10.1051/cocv:2004014. |
[20] |
G. Sundaramoorthi, A. Mennucci, S. Soatto and A. Yezzi,
A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering,
SIAM J. Imaging Sci. , 4 (2011), 109-145, URL http://dx.doi.org/10.1137/090781139.
doi: 10.1137/090781139. |
[21] |
L. Younes,
Computable elastic distances between shapes,
SIAM J. Appl. Math. , 58 (1998), 565-586 (electronic), URL http://dx.doi.org/10.1137/S0036139995287685.
doi: 10.1137/S0036139995287685. |
[22] |
L. Younes, P. W. Michor, J. Shah and D. Mumford,
A metric on shape space with explicit geodesics,
Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. , 19 (2008), 25-57, URL http://dx.doi.org/10.4171/RLM/506.
doi: 10.4171/RLM/506. |

[1] |
Tapio Helin. On infinite-dimensional hierarchical probability models in statistical inverse problems. Inverse Problems and Imaging, 2009, 3 (4) : 567-597. doi: 10.3934/ipi.2009.3.567 |
[2] |
Giovanna Citti, Maria Manfredini, Alessandro Sarti. Finite difference approximation of the Mumford and Shah functional in a contact manifold of the Heisenberg space. Communications on Pure and Applied Analysis, 2010, 9 (4) : 905-927. doi: 10.3934/cpaa.2010.9.905 |
[3] |
Agust Sverrir Egilsson. On embedding the $1:1:2$ resonance space in a Poisson manifold. Electronic Research Announcements, 1995, 1: 48-56. |
[4] |
Alexander Nabutovsky and Regina Rotman. Lengths of geodesics between two points on a Riemannian manifold. Electronic Research Announcements, 2007, 13: 13-20. |
[5] |
Aylin Aydoğdu, Sean T. McQuade, Nastassia Pouradier Duteil. Opinion Dynamics on a General Compact Riemannian Manifold. Networks and Heterogeneous Media, 2017, 12 (3) : 489-523. doi: 10.3934/nhm.2017021 |
[6] |
Andrew E.B. Lim, John B. Moore. A path following algorithm for infinite quadratic programming on a Hilbert space. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 653-670. doi: 10.3934/dcds.1998.4.653 |
[7] |
Saikat Mazumdar. Struwe's decomposition for a polyharmonic operator on a compact Riemannian manifold with or without boundary. Communications on Pure and Applied Analysis, 2017, 16 (1) : 311-330. doi: 10.3934/cpaa.2017015 |
[8] |
Shengbing Deng, Zied Khemiri, Fethi Mahmoudi. On spike solutions for a singularly perturbed problem in a compact riemannian manifold. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2063-2084. doi: 10.3934/cpaa.2018098 |
[9] |
Erwann Delay, Pieralberto Sicbaldi. Extremal domains for the first eigenvalue in a general compact Riemannian manifold. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5799-5825. doi: 10.3934/dcds.2015.35.5799 |
[10] |
Anna Maria Candela, J.L. Flores, M. Sánchez. A quadratic Bolza-type problem in a non-complete Riemannian manifold. Conference Publications, 2003, 2003 (Special) : 173-181. doi: 10.3934/proc.2003.2003.173 |
[11] |
Wenxiang Cong, Ge Wang, Qingsong Yang, Jia Li, Jiang Hsieh, Rongjie Lai. CT image reconstruction on a low dimensional manifold. Inverse Problems and Imaging, 2019, 13 (3) : 449-460. doi: 10.3934/ipi.2019022 |
[12] |
Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389 |
[13] |
Sergey V Lototsky, Henry Schellhorn, Ran Zhao. An infinite-dimensional model of liquidity in financial markets. Probability, Uncertainty and Quantitative Risk, 2021, 6 (2) : 117-138. doi: 10.3934/puqr.2021006 |
[14] |
Daniel Alpay, Mihai Putinar, Victor Vinnikov. A Hilbert space approach to bounded analytic extension in the ball. Communications on Pure and Applied Analysis, 2003, 2 (2) : 139-145. doi: 10.3934/cpaa.2003.2.139 |
[15] |
Anna Karczewska, Carlos Lizama. On stochastic fractional Volterra equations in Hilbert space. Conference Publications, 2007, 2007 (Special) : 541-550. doi: 10.3934/proc.2007.2007.541 |
[16] |
Onur Alp İlhan. Solvability of some partial integral equations in Hilbert space. Communications on Pure and Applied Analysis, 2008, 7 (4) : 837-844. doi: 10.3934/cpaa.2008.7.837 |
[17] |
Mahmoud M. El-Borai. On some fractional differential equations in the Hilbert space. Conference Publications, 2005, 2005 (Special) : 233-240. doi: 10.3934/proc.2005.2005.233 |
[18] |
P. Chiranjeevi, V. Kannan, Sharan Gopal. Periodic points and periods for operators on hilbert space. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4233-4237. doi: 10.3934/dcds.2013.33.4233 |
[19] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3043-3054. doi: 10.3934/dcdss.2020463 |
[20] |
Ella Pavlechko, Teemu Saksala. Uniqueness of the partial travel time representation of a compact Riemannian manifold with strictly convex boundary. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022028 |
2020 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]