September  2017, 9(3): 291-316. doi: 10.3934/jgm.2017012

Probability measures on infinite-dimensional Stiefel manifolds

1. 

Microsoft Deutschland GmbH, Germany

2. 

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italia

* Corresponding author: A. C. G. Mennucci

‡ Eleonora Bardelli contributed to this paper in her personal capacity. The views expressed in this paper are those of the authors and do not necessarily reflect the views of Microsoft Corporation

Received  December 2015 Revised  June 2016 Published  June 2017

An interest in infinite-dimensional manifolds has recently appeared in Shape Theory. An example is the Stiefel manifold, that has been proposed as a model for the space of immersed curves in the plane. It may be useful to define probabilities on such manifolds.

Suppose that $H$ is an infinite-dimensional separable Hilbert space.

Let $S\subset H$ be the sphere, $p\in S$. Let $\mu$ be the push forward of a Gaussian measure $\gamma$ from $T_p S$ onto $S$ using the exponential map. Let $v\in T_p S$ be a Cameron-Martin vector for $\gamma$; let $R$ be a rotation of $S$ in the direction $v$, and $\nu=R_\# \mu$ be the rotated measure. Then $\mu,\nu$ are mutually singular. This is counterintuitive, since the translation of a Gaussian measure in a Cameron-Martin direction produces equivalent measures.

Let $\gamma$ be a Gaussian measure on $H$; then there exists a smooth closed manifold $M\subset H$ such that the projection of $H$ to the nearest point on $M$ is not well defined for points in a set of positive $\gamma$ measure.

Instead it is possible to project a Gaussian measure to a Stiefel manifold to define a probability.

Citation: Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinite-dimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291-316. doi: 10.3934/jgm.2017012
References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.  Google Scholar

[2]

C. J. Atkin, The Hopf-Rinow theorem is false in infinite dimensions, Bull. London Math. Soc., 7 (1975), 261-266.  doi: 10.1112/blms/7.3.261.  Google Scholar

[3]

V. I. Bogachev, Measure Theory. Vol. Ⅰ, Ⅱ, Springer-Verlag, Berlin, 2007, URL http://dx.doi.org/10.1007/978-3-540-34514-5. doi: 10.1007/978-3-540-34514-5.  Google Scholar

[4]

V. I. Bogachev, Gaussian Measures, vol. 62 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1998. doi: 10.1090/surv/062.  Google Scholar

[5]

L. Breiman, Probability, Addison-Wesley, 1968.  Google Scholar

[6]

D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, vol. 33 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/033.  Google Scholar

[7]

G. Da Prato, An Introduction to Infinite-Dimensional Analysis, Springer, 2006. doi: 10.1007/3-540-29021-4.  Google Scholar

[8]

M. P. do Carmo, Riemannian Geometry, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1992, Translated from the second Portuguese edition by Francis Flaherty. doi: 10.1007/978-1-4757-2201-7.  Google Scholar

[9]

A. Edelman, T. A. Arias and S. T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl. , 20 (1999), 303-353, URL http://dx.doi.org/10.1137/S0895479895290954. doi: 10.1137/S0895479895290954.  Google Scholar

[10]

H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969.  Google Scholar

[11]

N. Grossman, Hilbert manifolds without epiconjugate points, Proc. Amer. Math. Soc., 16 (1965), 1365-1371.  doi: 10.1090/S0002-9939-1965-0188943-7.  Google Scholar

[12]

P. Harms and A. Mennucci, Geodesics in infinite dimensional Stiefel and Grassmann manifolds, Comptes rendus -Mathématique, 350 (2012), 773-776, URL http://cvgmt.sns.it/paper/336/. doi: 10.1016/j.crma.2012.08.010.  Google Scholar

[13]

D. G. Kendall, The diffusion of shape, Advances in applied probability, (), 428-430.   Google Scholar

[14]

D. G. Kendall, Shape manifolds, procrustean metrics, and complex projective spaces, Bulletin of the London Mathematical Society, 16 (1984), 81-121.  doi: 10.1112/blms/16.2.81.  Google Scholar

[15]

A. N. Kolmogorov, La transformation de laplace dans les espaces linéaires, CR Acad. Sci. Paris, 200 (1935), 1717-1718.   Google Scholar

[16]

S. Lang, Fundamentals of Differential Geometry, vol. 191 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4612-0541-8.  Google Scholar

[17]

H. Le and D. G. Kendall, The Riemannian structure of Euclidean shape spaces: A novel environment for statistics, The Annals of Statistics, 21 (1993), 1225-1271.  doi: 10.1214/aos/1176349259.  Google Scholar

[18]

C. Mantegazza and A. C. Mennucci, Hamilton-Jacobi equations and distance functions on Riemannian manifolds, Applied Math. and Optim., 47 (2003), 1-25.  doi: 10.1007/s00245-002-0736-4.  Google Scholar

[19]

A. C. G. Mennucci, Regularity and variationality of solutions to Hamilton-Jacobi equations. Ⅰ. Regularity, ESAIM Control Optim. Calc. Var. , 10 (2004), 426-451 (electronic), URL http://dx.doi.org/10.1051/cocv:2004014. doi: 10.1051/cocv:2004014.  Google Scholar

[20]

G. Sundaramoorthi, A. Mennucci, S. Soatto and A. Yezzi, A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering, SIAM J. Imaging Sci. , 4 (2011), 109-145, URL http://dx.doi.org/10.1137/090781139. doi: 10.1137/090781139.  Google Scholar

[21]

L. Younes, Computable elastic distances between shapes, SIAM J. Appl. Math. , 58 (1998), 565-586 (electronic), URL http://dx.doi.org/10.1137/S0036139995287685. doi: 10.1137/S0036139995287685.  Google Scholar

[22]

L. Younes, P. W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. , 19 (2008), 25-57, URL http://dx.doi.org/10.4171/RLM/506. doi: 10.4171/RLM/506.  Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.  Google Scholar

[2]

C. J. Atkin, The Hopf-Rinow theorem is false in infinite dimensions, Bull. London Math. Soc., 7 (1975), 261-266.  doi: 10.1112/blms/7.3.261.  Google Scholar

[3]

V. I. Bogachev, Measure Theory. Vol. Ⅰ, Ⅱ, Springer-Verlag, Berlin, 2007, URL http://dx.doi.org/10.1007/978-3-540-34514-5. doi: 10.1007/978-3-540-34514-5.  Google Scholar

[4]

V. I. Bogachev, Gaussian Measures, vol. 62 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1998. doi: 10.1090/surv/062.  Google Scholar

[5]

L. Breiman, Probability, Addison-Wesley, 1968.  Google Scholar

[6]

D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, vol. 33 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/033.  Google Scholar

[7]

G. Da Prato, An Introduction to Infinite-Dimensional Analysis, Springer, 2006. doi: 10.1007/3-540-29021-4.  Google Scholar

[8]

M. P. do Carmo, Riemannian Geometry, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1992, Translated from the second Portuguese edition by Francis Flaherty. doi: 10.1007/978-1-4757-2201-7.  Google Scholar

[9]

A. Edelman, T. A. Arias and S. T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl. , 20 (1999), 303-353, URL http://dx.doi.org/10.1137/S0895479895290954. doi: 10.1137/S0895479895290954.  Google Scholar

[10]

H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969.  Google Scholar

[11]

N. Grossman, Hilbert manifolds without epiconjugate points, Proc. Amer. Math. Soc., 16 (1965), 1365-1371.  doi: 10.1090/S0002-9939-1965-0188943-7.  Google Scholar

[12]

P. Harms and A. Mennucci, Geodesics in infinite dimensional Stiefel and Grassmann manifolds, Comptes rendus -Mathématique, 350 (2012), 773-776, URL http://cvgmt.sns.it/paper/336/. doi: 10.1016/j.crma.2012.08.010.  Google Scholar

[13]

D. G. Kendall, The diffusion of shape, Advances in applied probability, (), 428-430.   Google Scholar

[14]

D. G. Kendall, Shape manifolds, procrustean metrics, and complex projective spaces, Bulletin of the London Mathematical Society, 16 (1984), 81-121.  doi: 10.1112/blms/16.2.81.  Google Scholar

[15]

A. N. Kolmogorov, La transformation de laplace dans les espaces linéaires, CR Acad. Sci. Paris, 200 (1935), 1717-1718.   Google Scholar

[16]

S. Lang, Fundamentals of Differential Geometry, vol. 191 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4612-0541-8.  Google Scholar

[17]

H. Le and D. G. Kendall, The Riemannian structure of Euclidean shape spaces: A novel environment for statistics, The Annals of Statistics, 21 (1993), 1225-1271.  doi: 10.1214/aos/1176349259.  Google Scholar

[18]

C. Mantegazza and A. C. Mennucci, Hamilton-Jacobi equations and distance functions on Riemannian manifolds, Applied Math. and Optim., 47 (2003), 1-25.  doi: 10.1007/s00245-002-0736-4.  Google Scholar

[19]

A. C. G. Mennucci, Regularity and variationality of solutions to Hamilton-Jacobi equations. Ⅰ. Regularity, ESAIM Control Optim. Calc. Var. , 10 (2004), 426-451 (electronic), URL http://dx.doi.org/10.1051/cocv:2004014. doi: 10.1051/cocv:2004014.  Google Scholar

[20]

G. Sundaramoorthi, A. Mennucci, S. Soatto and A. Yezzi, A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering, SIAM J. Imaging Sci. , 4 (2011), 109-145, URL http://dx.doi.org/10.1137/090781139. doi: 10.1137/090781139.  Google Scholar

[21]

L. Younes, Computable elastic distances between shapes, SIAM J. Appl. Math. , 58 (1998), 565-586 (electronic), URL http://dx.doi.org/10.1137/S0036139995287685. doi: 10.1137/S0036139995287685.  Google Scholar

[22]

L. Younes, P. W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. , 19 (2008), 25-57, URL http://dx.doi.org/10.4171/RLM/506. doi: 10.4171/RLM/506.  Google Scholar

Figure 1.  Proof of Proposition 3.6. Two points on the ellipsoid $C$, their images under $\exp_{-p}$ and, in white, their images under $\exp_p$. The black diamonds on the sphere can coincide with the white diamonds only if they all lie on the equator.
[1]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[2]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[3]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[4]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[5]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[6]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[7]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[8]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[9]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[10]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[11]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[12]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[13]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[14]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[15]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[16]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[17]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[18]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[19]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[20]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (215)
  • HTML views (58)
  • Cited by (1)

[Back to Top]