American Institute of Mathematical Sciences

September  2017, 9(3): 317-333. doi: 10.3934/jgm.2017013

Complete spelling rules for the Monster tower over three-space

 1 Lab49, 30 St. Mary Axe, London EC3A 8EP, UK 2 Mathematics Department, De Anza College, 21250 Stevens Creek Blvd., Cupertino, CA 95014, USA 3 Department of Mathematics and Statistics, Sacramento State University, 6000 J St., Sacramento, CA 95819, USA

Received  February 2015 Revised  August 2016 Published  June 2017

The Monster tower, also known as the Semple tower, is a sequence of manifolds with distributions of interest to both differential and algebraic geometers. Each manifold is a projective bundle over the previous. Moreover, each level is a fiber compactified jet bundle equipped with an action of finite jets of the diffeomorphism group. There is a correspondence between points in the tower and curves in the base manifold. These points admit a stratification which can be encoded by a word called the RVT code. Here, we derive the spelling rules for these words in the case of a three dimensional base. That is, we determine precisely which words are realized by points in the tower. To this end, we study the incidence relations between certain subtowers, called Baby Monsters, and present a general method for determining the level at which each Baby Monster is born. Here, we focus on the case where the base manifold is three dimensional, but all the methods presented generalize to bases of arbitrary dimension.

Citation: Alex Castro, Wyatt Howard, Corey Shanbrom. Complete spelling rules for the Monster tower over three-space. Journal of Geometric Mechanics, 2017, 9 (3) : 317-333. doi: 10.3934/jgm.2017013
References:
 [1] V. I. Arnol'd, Simple singularities of curves, Proc. Steklov Inst. Math., 226 (1999), 20-28. [2] E. Cartan, Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes, Bull. Soc. Math. France, 42 (1914), 12-48. [3] A. Castro, Chains and Monsters: From Cauchy-Riemann Geometry to Semple Towers and Singular Space Curves, PhD thesis, 2010. [4] A. Castro, S. Colley, G. Kennedy and C. Shanbrom, A coarse stratification of the Monster tower, arXiv: 1606.07931. [math. AG]. [5] A. Castro and W. Howard, A Monster tower approach to Goursat multi-flags, Differential Geom. Appl., 30 (2012), 405-427.  doi: 10.1016/j.difgeo.2012.06.005. [6] A. Castro, W. Howard and C. Shanbrom, Bridges between subRiemannian geometry and algebraic geometry, Proceedings of 10th AIMS Conference on Dynamical Systems, Differential Equations, and Applications, 30 (2015), 239-247.  doi: 10.3934/proc.2015.0239. [7] A. Castro, R. Montgomery and W. Howard, Spatial curve singularities and the Monster/Semple tower, Israel J. Math., 192 (2012), 381-427.  doi: 10.1007/s11856-012-0031-2. [8] A. Giaro, A. Kumpera and C. Ruiz, Sur la lecture correcte d'un résultat d'Élie Cartan, C. R. Acad. Sci. Paris, 287 (1978), 241-244. [9] F. Jean, The car with N trailers: Characterisation of the singular configurations, ESAIM: Control, Optimisation, and Calculus of Variations, 1 (1996), 241-266. [10] A. Kumpera and J. L. Rubin, Multi-flag systems and ordinary differential equations, Nagoya Math. J., 166 (2002), 1-27.  doi: 10.1017/S0027763000008229. [11] A. Kushner, V. Lychagin and V. Ruvtsov, Contact Geometry and Nonlinear Differential Equations, Cambridge University Press, Cambridge, UK, 2007. [12] S. J. Li and W. Respondek, The geometry, controllability, and flatness property of the $n$-bar system, Internat. J. Control, 84 (2011), 834-850.  doi: 10.1080/00207179.2011.569955. [13] F. Luca and J. J. Risler, The maximum of the degree of nonholonomy for the car with N trailers, Proceedings of the 4th IFAC Symposium on Robot Control, Capri, (1994), 165-170. [14] R. Montgomery and M. Zhitomirskii, Geometric approach to goursat flags, Ann. Inst. H. Poincaré -AN, 18 (2001), 459-493.  doi: 10.1016/S0294-1449(01)00076-2. [15] R. Montgomery and M. Zhitomirskii, Points and curves in the monster tower, Memoirs of the AMS, 203 (2010), x+137 pp.  doi: 10.1090/S0065-9266-09-00598-5. [16] P. Mormul, Geometric classes of Goursat flags and their encoding by small growth vectors, Central European J. Math., 2 (2004), 859-883.  doi: 10.2478/BF02475982. [17] P. Mormul, Multi-dimensional Cartan prolongation and special k-flags, Geometric Singularity Theory, Banach Center Publications, 65 (2004), 157-178. doi: 10.4064/bc65-0-12. [18] P. Mormul, Small growth vectors of the compactifications of the contact systems on $J^r(1,1)$, Contemporary Mathematics, 569 (2012), 123-141.  doi: 10.1090/conm/569/11247. [19] P. Mormul and F. Pelletier, Special 2-flags in lengths not exceeding four: A study in strong nilpotency of distributions, arXiv: 1011.1763. [math. DG]. [20] F. Pelletier and M. Slayman, Articulated arm and special multi-flags, J. Math. Sci. Adv. Appl., 8 (2011), 9-41. [21] F. Pelletier and M. Slayman, Configurations of an articulated arm and singularities of special multi-flags, SIGMA, 10 (2014), Paper 059, 38 pp.  doi: 10.3842/SIGMA.2014.059. [22] W. Respondek, Symmetries and minimal flat outputs of nonlinear control systems, New Trends in Nonlinear Dynamics and Control and their Applications, Lecture Notes in Control and Information Science, 295 (2004), 65-86. doi: 10.1007/978-3-540-45056-6_5. [23] J. Semple, Singularities of Space Algebraic Curves, Proceedings of the London Mathematical Society, 44 (1938), 149-174. [24] C. Shanbrom, The Puiseux characteristic of a Goursat germ, J. Dynamical and Control Systems, 20 (2014), 33-46.  doi: 10.1007/s10883-013-9207-2.

show all references

References:
 [1] V. I. Arnol'd, Simple singularities of curves, Proc. Steklov Inst. Math., 226 (1999), 20-28. [2] E. Cartan, Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes, Bull. Soc. Math. France, 42 (1914), 12-48. [3] A. Castro, Chains and Monsters: From Cauchy-Riemann Geometry to Semple Towers and Singular Space Curves, PhD thesis, 2010. [4] A. Castro, S. Colley, G. Kennedy and C. Shanbrom, A coarse stratification of the Monster tower, arXiv: 1606.07931. [math. AG]. [5] A. Castro and W. Howard, A Monster tower approach to Goursat multi-flags, Differential Geom. Appl., 30 (2012), 405-427.  doi: 10.1016/j.difgeo.2012.06.005. [6] A. Castro, W. Howard and C. Shanbrom, Bridges between subRiemannian geometry and algebraic geometry, Proceedings of 10th AIMS Conference on Dynamical Systems, Differential Equations, and Applications, 30 (2015), 239-247.  doi: 10.3934/proc.2015.0239. [7] A. Castro, R. Montgomery and W. Howard, Spatial curve singularities and the Monster/Semple tower, Israel J. Math., 192 (2012), 381-427.  doi: 10.1007/s11856-012-0031-2. [8] A. Giaro, A. Kumpera and C. Ruiz, Sur la lecture correcte d'un résultat d'Élie Cartan, C. R. Acad. Sci. Paris, 287 (1978), 241-244. [9] F. Jean, The car with N trailers: Characterisation of the singular configurations, ESAIM: Control, Optimisation, and Calculus of Variations, 1 (1996), 241-266. [10] A. Kumpera and J. L. Rubin, Multi-flag systems and ordinary differential equations, Nagoya Math. J., 166 (2002), 1-27.  doi: 10.1017/S0027763000008229. [11] A. Kushner, V. Lychagin and V. Ruvtsov, Contact Geometry and Nonlinear Differential Equations, Cambridge University Press, Cambridge, UK, 2007. [12] S. J. Li and W. Respondek, The geometry, controllability, and flatness property of the $n$-bar system, Internat. J. Control, 84 (2011), 834-850.  doi: 10.1080/00207179.2011.569955. [13] F. Luca and J. J. Risler, The maximum of the degree of nonholonomy for the car with N trailers, Proceedings of the 4th IFAC Symposium on Robot Control, Capri, (1994), 165-170. [14] R. Montgomery and M. Zhitomirskii, Geometric approach to goursat flags, Ann. Inst. H. Poincaré -AN, 18 (2001), 459-493.  doi: 10.1016/S0294-1449(01)00076-2. [15] R. Montgomery and M. Zhitomirskii, Points and curves in the monster tower, Memoirs of the AMS, 203 (2010), x+137 pp.  doi: 10.1090/S0065-9266-09-00598-5. [16] P. Mormul, Geometric classes of Goursat flags and their encoding by small growth vectors, Central European J. Math., 2 (2004), 859-883.  doi: 10.2478/BF02475982. [17] P. Mormul, Multi-dimensional Cartan prolongation and special k-flags, Geometric Singularity Theory, Banach Center Publications, 65 (2004), 157-178. doi: 10.4064/bc65-0-12. [18] P. Mormul, Small growth vectors of the compactifications of the contact systems on $J^r(1,1)$, Contemporary Mathematics, 569 (2012), 123-141.  doi: 10.1090/conm/569/11247. [19] P. Mormul and F. Pelletier, Special 2-flags in lengths not exceeding four: A study in strong nilpotency of distributions, arXiv: 1011.1763. [math. DG]. [20] F. Pelletier and M. Slayman, Articulated arm and special multi-flags, J. Math. Sci. Adv. Appl., 8 (2011), 9-41. [21] F. Pelletier and M. Slayman, Configurations of an articulated arm and singularities of special multi-flags, SIGMA, 10 (2014), Paper 059, 38 pp.  doi: 10.3842/SIGMA.2014.059. [22] W. Respondek, Symmetries and minimal flat outputs of nonlinear control systems, New Trends in Nonlinear Dynamics and Control and their Applications, Lecture Notes in Control and Information Science, 295 (2004), 65-86. doi: 10.1007/978-3-540-45056-6_5. [23] J. Semple, Singularities of Space Algebraic Curves, Proceedings of the London Mathematical Society, 44 (1938), 149-174. [24] C. Shanbrom, The Puiseux characteristic of a Goursat germ, J. Dynamical and Control Systems, 20 (2014), 33-46.  doi: 10.1007/s10883-013-9207-2.
The three critical planes $V, T_1$, and $T_2$, and their intersections, the distinguished lines $L_1, L_2$, and $L_3$.
Critical plane configurations that can appear in the distribution above an $R$ point (top left), a $V$ or $T_1$ point (top right), a $T_2$ point (bottom left), and an $L_j$ point (bottom right).
Critical plane configuration over $p_3\in RVL_1$. The left side shows the birth of $T_1(p_3)=\delta_2^1(p_3)$ as the first prolongation of the vertical plane at level 2. The right side shows the birth of $T_2(p_3)=\delta_1^2(p_3)$ as the second prolongation of the vertical plane at level 1. These two Baby Monsters meet in $\Delta^3$, and their intersection is the distinguished line $L_2(p_3)$. See Example 2.
Critical plane configuration over $p_4\in RVL_1T_2$. This shows the birth of $T_2(p_4)=\delta_1^3(p_4)$ as the third prolongation of the vertical plane at level 1. See Example 3.
RVT Code Spelling Rules
 Letter Can be followed by Cannot be followed by $R$ $R, V$ $T_i, L_j$ $V$ $R, V, T_1, L_1$ $T_2, L_2, L_3$ $T_1$ $R, V, T_1, L_1$ $T_2, L_2, L_3$ $T_2$ $R, V, T_2, L_3$ $T_1, L_1, L_2$ $L_1$ $R, V, T_1, T_2, L_1, L_2, L_3$ $\emptyset$ $L_2$ $R, V, T_1, T_2, L_1, L_2, L_3$ $\emptyset$ $L_3$ $R, V, T_1, T_2, L_1, L_2, L_3$ $\emptyset$
 Letter Can be followed by Cannot be followed by $R$ $R, V$ $T_i, L_j$ $V$ $R, V, T_1, L_1$ $T_2, L_2, L_3$ $T_1$ $R, V, T_1, L_1$ $T_2, L_2, L_3$ $T_2$ $R, V, T_2, L_3$ $T_1, L_1, L_2$ $L_1$ $R, V, T_1, T_2, L_1, L_2, L_3$ $\emptyset$ $L_2$ $R, V, T_1, T_2, L_1, L_2, L_3$ $\emptyset$ $L_3$ $R, V, T_1, T_2, L_1, L_2, L_3$ $\emptyset$
Critical Hyperplane Configurations
 Last letter in RVT code of $p\in M^k$ Critical planes appearing in $\Delta^k(p)$ $R$ $V$ $V$ or $T_1$ $V$ and $T_1$ $T_2$ $V$ and $T_2$ $L_1, L_2,$ or $L_3$ $V, T_1$, and $T_2$
 Last letter in RVT code of $p\in M^k$ Critical planes appearing in $\Delta^k(p)$ $R$ $V$ $V$ or $T_1$ $V$ and $T_1$ $T_2$ $V$ and $T_2$ $L_1, L_2,$ or $L_3$ $V, T_1$, and $T_2$
Base Cases of Inductive Proof
 RVT code of $p_k\in M^k$ $T_{1}(p_k)$ $T_{2}(p_k)$ $\lambda V T_1^{m} L_1 T_{2} \, \, \text{for} \, \, m \geq 0$ None $\delta ^{m+3}_{k-m-3}(p_{k })$ $\lambda L_1 T_1^{m} L_1 T_{2} \, \, \text{for} \, \, m \geq 1$ None $\delta ^{m+3}_{k-m-3}(p_{k })$ $\lambda L_1 L_1 T_{2}$ None $\delta ^{3}_{k-3}(p_{k})$ $\lambda VT_1^{m} L_1L_{2} \, \, \text{for} \, \, m \geq 0$ $\delta ^{2}_{k-2}(p_{k})$ $\delta ^{m+3}_{k-m-3}(p_{k})$ $\lambda L_1T_1^{m} L_1L_{2} \, \, \text{for} \, \, m \geq 1$ $\delta ^{2}_{k-2}(p_{k})$ $\delta ^{m+3}_{k-m-3}(p_{k})$ $\lambda L_1L_1L_{2}$ $\delta ^{2}_{k-2} (p_{k})$ $\delta ^{3}_{k-3}(p_{k})$ $\lambda VT_1^{m} L_1 L_{3} \, \, \text{for} \, \, m \geq 0$ $\delta ^{1}_{k-1}(p_{k})$ $\delta ^{m + 3}_{k-m-3}(p_{k})$ $\lambda L_1T_1^{m} L_1 L_{3} \, \, \text{for} \, \, m \geq 1$ $\delta ^{1}_{k-1}(p_{k})$ $\delta ^{m + 3}_{k-m-3}(p_{k})$ $\lambda L_1L_1 L_{3}$ $\delta ^{1}_{k-1}(p_{k})$ $\delta ^{3}_{k-3}(p_{k})$
 RVT code of $p_k\in M^k$ $T_{1}(p_k)$ $T_{2}(p_k)$ $\lambda V T_1^{m} L_1 T_{2} \, \, \text{for} \, \, m \geq 0$ None $\delta ^{m+3}_{k-m-3}(p_{k })$ $\lambda L_1 T_1^{m} L_1 T_{2} \, \, \text{for} \, \, m \geq 1$ None $\delta ^{m+3}_{k-m-3}(p_{k })$ $\lambda L_1 L_1 T_{2}$ None $\delta ^{3}_{k-3}(p_{k})$ $\lambda VT_1^{m} L_1L_{2} \, \, \text{for} \, \, m \geq 0$ $\delta ^{2}_{k-2}(p_{k})$ $\delta ^{m+3}_{k-m-3}(p_{k})$ $\lambda L_1T_1^{m} L_1L_{2} \, \, \text{for} \, \, m \geq 1$ $\delta ^{2}_{k-2}(p_{k})$ $\delta ^{m+3}_{k-m-3}(p_{k})$ $\lambda L_1L_1L_{2}$ $\delta ^{2}_{k-2} (p_{k})$ $\delta ^{3}_{k-3}(p_{k})$ $\lambda VT_1^{m} L_1 L_{3} \, \, \text{for} \, \, m \geq 0$ $\delta ^{1}_{k-1}(p_{k})$ $\delta ^{m + 3}_{k-m-3}(p_{k})$ $\lambda L_1T_1^{m} L_1 L_{3} \, \, \text{for} \, \, m \geq 1$ $\delta ^{1}_{k-1}(p_{k})$ $\delta ^{m + 3}_{k-m-3}(p_{k})$ $\lambda L_1L_1 L_{3}$ $\delta ^{1}_{k-1}(p_{k})$ $\delta ^{3}_{k-3}(p_{k})$
Summary of Example 2: $RVL_1$
 Level $i$ Coordinates on $M^i$ $\mathbb P\Delta^{i-1} = F_i$ coordinates Critical planes in $\Delta^i$ RVT code of $p_i$ $0$ $(x, y, z)$ n/a none n/a $1$ $(x, y, z, u_1, v_1)$$u_1=\frac{dy}{dx}, v_1=\frac{dz}{dx} [dx : dy : dz] V(p_1)=\delta_1^0 p_1=(p_0, l_0)\in R$$l_0 \subset \Delta^0=T_{p_0}M^0$ $2$ $(x, y, z, u_1, v_1, u_2, v_2)$$u_2=\frac{dx}{du_1}, v_2=\frac{dv_1}{du_1} [dx : du_1 : dv_1] V(p_2)=\delta_2^0,$$T_1(p_2)=\delta_1^1$ $p_2=(p_1, l_1)\in RV$$l_1 \subset V(p_1) \subset \Delta^1 3 (x, y, z, u_1, v_1, u_2, v_3, u_3, v_3)$$u_3=\frac{du_1}{dv_2}, v_3=\frac{du_2}{dv_2}$ $[du_1 : du_2 : dv_2]$ $V(p_3)=\delta_3^0,$$T_1(p_3)=\delta_2^1,$$T_2(p_3)=\delta_1^2$ $p_3=(p_2, l_2)\in RVL_1$$l_2 = L_1(p_2) \subset \Delta^2  Level i Coordinates on M^i \mathbb P\Delta^{i-1} = F_i coordinates Critical planes in \Delta^i RVT code of p_i 0 (x, y, z) n/a none n/a 1 (x, y, z, u_1, v_1)$$u_1=\frac{dy}{dx}, v_1=\frac{dz}{dx}$ $[dx : dy : dz]$ $V(p_1)=\delta_1^0$ $p_1=(p_0, l_0)\in R$$l_0 \subset \Delta^0=T_{p_0}M^0 2 (x, y, z, u_1, v_1, u_2, v_2)$$u_2=\frac{dx}{du_1}, v_2=\frac{dv_1}{du_1}$ $[dx : du_1 : dv_1]$ $V(p_2)=\delta_2^0,$$T_1(p_2)=\delta_1^1 p_2=(p_1, l_1)\in RV$$l_1 \subset V(p_1) \subset \Delta^1$ $3$ $(x, y, z, u_1, v_1, u_2, v_3, u_3, v_3)$$u_3=\frac{du_1}{dv_2}, v_3=\frac{du_2}{dv_2} [du_1 : du_2 : dv_2] V(p_3)=\delta_3^0,$$T_1(p_3)=\delta_2^1,$$T_2(p_3)=\delta_1^2 p_3=(p_2, l_2)\in RVL_1$$l_2 = L_1(p_2) \subset \Delta^2$
 [1] Roberto De Leo, James A. Yorke. The graph of the logistic map is a tower. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5243-5269. doi: 10.3934/dcds.2021075 [2] Ingenuin Gasser. Modelling and simulation of a solar updraft tower. Kinetic and Related Models, 2009, 2 (1) : 191-204. doi: 10.3934/krm.2009.2.191 [3] David Ginzburg and Joseph Hundley. A new tower of Rankin-Selberg integrals. Electronic Research Announcements, 2006, 12: 56-62. [4] Andrés Contreras, Manuel del Pino. Nodal bubble-tower solutions to radial elliptic problems near criticality. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 525-539. doi: 10.3934/dcds.2006.16.525 [5] Palash Sarkar, Shashank Singh. A unified polynomial selection method for the (tower) number field sieve algorithm. Advances in Mathematics of Communications, 2019, 13 (3) : 435-455. doi: 10.3934/amc.2019028 [6] Yuxin Ge, Ruihua Jing, Feng Zhou. Bubble tower solutions of slightly supercritical elliptic equations and application in symmetric domains. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 751-770. doi: 10.3934/dcds.2007.17.751 [7] Zhongyuan Liu. Nodal Bubble-Tower Solutions for a semilinear elliptic problem with competing powers. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5299-5317. doi: 10.3934/dcds.2017230 [8] Gabriele Cora, Alessandro Iacopetti. Sign-changing bubble-tower solutions to fractional semilinear elliptic problems. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6149-6173. doi: 10.3934/dcds.2019268 [9] Angela Pistoia, Tonia Ricciardi. Sign-changing tower of bubbles for a sinh-Poisson equation with asymmetric exponents. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5651-5692. doi: 10.3934/dcds.2017245 [10] Eli Glasner, Benjamin Weiss. A generic distal tower of arbitrary countable height over an arbitrary infinite ergodic system. Journal of Modern Dynamics, 2021, 17: 435-463. doi: 10.3934/jmd.2021015 [11] Yanbo Hu, Tong Li. The regularity of a degenerate Goursat problem for the 2-D isothermal Euler equations. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3317-3336. doi: 10.3934/cpaa.2019149 [12] Zhi-Qiang Shao. Global existence of classical solutions of Goursat problem for quasilinear hyperbolic systems of diagonal form with large BV data. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2739-2752. doi: 10.3934/cpaa.2013.12.2739 [13] Abderrahman Iggidr, Josepha Mbang, Gauthier Sallet, Jean-Jules Tewa. Multi-compartment models. Conference Publications, 2007, 2007 (Special) : 506-519. doi: 10.3934/proc.2007.2007.506 [14] Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial and Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130 [15] Zhongqiang Wu, Zongkui Xie. A multi-objective lion swarm optimization based on multi-agent. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022001 [16] Geoffrey Beck, Sebastien Imperiale, Patrick Joly. Mathematical modelling of multi conductor cables. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 521-546. doi: 10.3934/dcdss.2015.8.521 [17] Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6405-6424. doi: 10.3934/dcdsb.2021025 [18] Richard Carney, Monique Chyba, Chris Gray, George Wilkens, Corey Shanbrom. Multi-agent systems for quadcopters. Journal of Geometric Mechanics, 2022, 14 (1) : 1-28. doi: 10.3934/jgm.2021005 [19] Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 [20] Kang-Ling Liao, Chih-Wen Shih, Chi-Jer Yu. The snapback repellers for chaos in multi-dimensional maps. Journal of Computational Dynamics, 2018, 5 (1&2) : 81-92. doi: 10.3934/jcd.2018004

2021 Impact Factor: 0.737