-
Previous Article
On the relationship between the energy shaping and the Lyapunov constraint based methods
- JGM Home
- This Issue
-
Next Article
On a geometric framework for Lagrangian supermechanics
Instability criterion for periodic solutions with spatio-temporal symmetries in Hamiltonian systems
1. | Faculty of Science, University of Ontario Institute of Technology, Oshawa, ONT L1H 7K4, Canada |
2. | Department of Mathematics and Statistics, Queen's University, Kingston, ONT K7L 3N6, Canada |
We consider the question of linear stability of a periodic solution $z(t)$ with finite spatio-temporal symmetry group of a reversible-equivariant Hamiltonian system obtained as a minimizer of the action functional. Our main theorem states that $z(t)$ is unstable if a subspace $W$ associated with the boundary conditions of the minimizing problem is a Lagrangian subspace with no focal points on the time interval defined by the boundary conditions and the second variation restricted to the subspace $W$ at the minimizer has positive directions. We show that the conditions of our theorem are always met for a class of minimizing periodic orbits with the standard mechanical reversing symmetry. Comparison theorems for Lagrangian subspaces and the use of time-reversing symmetries are essential tools in constructing stable and unstable subspaces for $z(t)$. In particular, our results are complementary to the recent paper of Hu and Sun Commun. Math. Phys. 290, (2009).
References:
[1] |
V. I. Arnol'd,
The Sturm theorems and symplectic geometry, Funktsional. Anal. i Prilozhen., 19 (1985), 1-10, 95.
|
[2] |
S. V. Bolotin and D. V. Treschev,
Hill's formula, Russian Math. Surveys, 65 (2010), 191-257.
doi: 10.1070/RM2010v065n02ABEH004671. |
[3] |
R. Bott,
On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math., 9 (1956), 171-206.
doi: 10.1002/cpa.3160090204. |
[4] |
S. Cappell, R. Lee and E. Y. Miller,
On the Maslov index, Comm. Pure Appl. Math., 47 (1994), 121-186.
doi: 10.1002/cpa.3160470202. |
[5] |
K.-C. Chen,
Action minimizing orbits in the parallelogram four-body problem with equal masses, Arch. Ration. Mech. Anal., 158 (2001), 293-318.
doi: 10.1007/s002050100146. |
[6] |
K.-C. Chen,
Binary decompositions for the planar N-body problems and symmetric periodic solutions, Arch. Ration. Mech. Anal., 170 (2003), 247-276.
doi: 10.1007/s00205-003-0277-2. |
[7] |
A. Chenciner and R. Montgomery,
A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. of Math., 152 (2000), 881-901.
doi: 10.2307/2661357. |
[8] |
A. Chenciner and A. Venturelli,
Minima de l'intégrale d'action du Probléme newtonien de 4 corps de masses égales dans $\mathbb{R}^{3}$ : orbites hip-hop, Celestial Mechanics and Dynamical Astronomy, 77 (2000), 139-152.
doi: 10.1023/A:1008381001328. |
[9] |
G. Contreras and R. Iturriaga,
Convex Hamiltonians without conjugate points, Ergodic Theory Dynam. Systems, 19 (1999), 901-952.
doi: 10.1017/S014338579913387X. |
[10] |
J. J. Duistermaat,
On the Morse index in variational calculus, Adv. Math., 21 (1976), 173-195.
doi: 10.1016/0001-8708(76)90074-8. |
[11] |
D. Ferrario and S. Terracini,
On the existence of collisionless equivariant minimizers for the classical n-body problem, Inv. Math., 155 (2004), 305-362.
doi: 10.1007/s00222-003-0322-7. |
[12] |
M. Golubitsky, I. Stewart and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. Ⅱ, Applied Mathematical Sciences, 69, Springer-Verlag, New-York, 1988.
doi: 10.1007/978-1-4612-4574-2. |
[13] |
P. Hartman, Ordinary Differential Equations, Birkhäuser, Boston, 1982. |
[14] |
X. Hu and S. Sun,
Index and stability of symmetric periodic orbits in Hamiltonian systems with application to figure-eight orbit, Commun. Math. Phys., 290 (2009), 737-777.
doi: 10.1007/s00220-009-0860-y. |
[15] |
M. Lewis, D. Offin, P.-L. Buono and M. Kovacic,
Instability of the periodic Hip-Hop orbit in the 2N-body problem with equal masses, Discrete and Continuous Dynamical Systems -A, 33 (2013), 1137-1155.
|
[16] |
J. E. Marsden, Lectures on Mechanics, LMS Lecture Note Series, 174, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511624001. |
[17] |
M. Morse, The Calculus of Variations in the Large, American Mathematical Society Colloquium Publications, 18 American Mathematical Society, Providence, 1996. |
[18] |
D. Offin,
A spectral theorem for reversible second order equations with periodic coefficients, Differential and Integral Equations, 5 (1992), 615-629.
|
[19] |
D. Offin,
Hyperbolic minimizing geodesics, Trans. AMS, 352 (2000), 3323-3338.
doi: 10.1090/S0002-9947-00-02483-1. |
[20] |
D. Offin and H. Cabral,
Hyperbolic symmetric periodic orbits in the isosceles three-body problem, Disc. Cont. Dyn. Syst. Ser. S, 2 (2009), 379-392.
doi: 10.3934/dcdss.2009.2.379. |
[21] |
G. E. Roberts,
Linear stability analysis of the figure-eight orbit in the three-body problem, Ergodic Theory Dynam. Systems, 27 (2007), 1947-1963.
doi: 10.1017/S0143385707000284. |
show all references
References:
[1] |
V. I. Arnol'd,
The Sturm theorems and symplectic geometry, Funktsional. Anal. i Prilozhen., 19 (1985), 1-10, 95.
|
[2] |
S. V. Bolotin and D. V. Treschev,
Hill's formula, Russian Math. Surveys, 65 (2010), 191-257.
doi: 10.1070/RM2010v065n02ABEH004671. |
[3] |
R. Bott,
On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math., 9 (1956), 171-206.
doi: 10.1002/cpa.3160090204. |
[4] |
S. Cappell, R. Lee and E. Y. Miller,
On the Maslov index, Comm. Pure Appl. Math., 47 (1994), 121-186.
doi: 10.1002/cpa.3160470202. |
[5] |
K.-C. Chen,
Action minimizing orbits in the parallelogram four-body problem with equal masses, Arch. Ration. Mech. Anal., 158 (2001), 293-318.
doi: 10.1007/s002050100146. |
[6] |
K.-C. Chen,
Binary decompositions for the planar N-body problems and symmetric periodic solutions, Arch. Ration. Mech. Anal., 170 (2003), 247-276.
doi: 10.1007/s00205-003-0277-2. |
[7] |
A. Chenciner and R. Montgomery,
A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. of Math., 152 (2000), 881-901.
doi: 10.2307/2661357. |
[8] |
A. Chenciner and A. Venturelli,
Minima de l'intégrale d'action du Probléme newtonien de 4 corps de masses égales dans $\mathbb{R}^{3}$ : orbites hip-hop, Celestial Mechanics and Dynamical Astronomy, 77 (2000), 139-152.
doi: 10.1023/A:1008381001328. |
[9] |
G. Contreras and R. Iturriaga,
Convex Hamiltonians without conjugate points, Ergodic Theory Dynam. Systems, 19 (1999), 901-952.
doi: 10.1017/S014338579913387X. |
[10] |
J. J. Duistermaat,
On the Morse index in variational calculus, Adv. Math., 21 (1976), 173-195.
doi: 10.1016/0001-8708(76)90074-8. |
[11] |
D. Ferrario and S. Terracini,
On the existence of collisionless equivariant minimizers for the classical n-body problem, Inv. Math., 155 (2004), 305-362.
doi: 10.1007/s00222-003-0322-7. |
[12] |
M. Golubitsky, I. Stewart and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. Ⅱ, Applied Mathematical Sciences, 69, Springer-Verlag, New-York, 1988.
doi: 10.1007/978-1-4612-4574-2. |
[13] |
P. Hartman, Ordinary Differential Equations, Birkhäuser, Boston, 1982. |
[14] |
X. Hu and S. Sun,
Index and stability of symmetric periodic orbits in Hamiltonian systems with application to figure-eight orbit, Commun. Math. Phys., 290 (2009), 737-777.
doi: 10.1007/s00220-009-0860-y. |
[15] |
M. Lewis, D. Offin, P.-L. Buono and M. Kovacic,
Instability of the periodic Hip-Hop orbit in the 2N-body problem with equal masses, Discrete and Continuous Dynamical Systems -A, 33 (2013), 1137-1155.
|
[16] |
J. E. Marsden, Lectures on Mechanics, LMS Lecture Note Series, 174, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511624001. |
[17] |
M. Morse, The Calculus of Variations in the Large, American Mathematical Society Colloquium Publications, 18 American Mathematical Society, Providence, 1996. |
[18] |
D. Offin,
A spectral theorem for reversible second order equations with periodic coefficients, Differential and Integral Equations, 5 (1992), 615-629.
|
[19] |
D. Offin,
Hyperbolic minimizing geodesics, Trans. AMS, 352 (2000), 3323-3338.
doi: 10.1090/S0002-9947-00-02483-1. |
[20] |
D. Offin and H. Cabral,
Hyperbolic symmetric periodic orbits in the isosceles three-body problem, Disc. Cont. Dyn. Syst. Ser. S, 2 (2009), 379-392.
doi: 10.3934/dcdss.2009.2.379. |
[21] |
G. E. Roberts,
Linear stability analysis of the figure-eight orbit in the three-body problem, Ergodic Theory Dynam. Systems, 27 (2007), 1947-1963.
doi: 10.1017/S0143385707000284. |
[1] |
Ana Cristina Mereu, Marco Antonio Teixeira. Reversibility and branching of periodic orbits. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1177-1199. doi: 10.3934/dcds.2013.33.1177 |
[2] |
B. Buffoni, F. Giannoni. Brake periodic orbits of prescribed Hamiltonian for indefinite Lagrangian systems. Discrete and Continuous Dynamical Systems, 1995, 1 (2) : 217-222. doi: 10.3934/dcds.1995.1.217 |
[3] |
V. Barbu. Periodic solutions to unbounded Hamiltonian system. Discrete and Continuous Dynamical Systems, 1995, 1 (2) : 277-283. doi: 10.3934/dcds.1995.1.277 |
[4] |
Tianqing An, Zhi-Qiang Wang. Periodic solutions of Hamiltonian systems with anisotropic growth. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1069-1082. doi: 10.3934/cpaa.2010.9.1069 |
[5] |
Alessandro Fonda, Andrea Sfecci. Multiple periodic solutions of Hamiltonian systems confined in a box. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1425-1436. doi: 10.3934/dcds.2017059 |
[6] |
Francesca Alessio, Carlo Carminati, Piero Montecchiari. Heteroclinic motions joining almost periodic solutions for a class of Lagrangian systems. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 569-584. doi: 10.3934/dcds.1999.5.569 |
[7] |
Anna Capietto, Walter Dambrosio, Tiantian Ma, Zaihong Wang. Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1835-1856. doi: 10.3934/dcds.2013.33.1835 |
[8] |
Antonio J. Ureña. Instability of periodic minimals. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 345-357. doi: 10.3934/dcds.2013.33.345 |
[9] |
E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1 |
[10] |
Jean Mawhin. Periodic solutions of second order Lagrangian difference systems with bounded or singular $\phi$-Laplacian and periodic potential. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1065-1076. doi: 10.3934/dcdss.2013.6.1065 |
[11] |
Qiong Meng, X. H. Tang. Solutions of a second-order Hamiltonian system with periodic boundary conditions. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1053-1067. doi: 10.3934/cpaa.2010.9.1053 |
[12] |
Jianshe Yu, Honghua Bin, Zhiming Guo. Periodic solutions for discrete convex Hamiltonian systems via Clarke duality. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 939-950. doi: 10.3934/dcds.2006.15.939 |
[13] |
Mitsuru Shibayama. Periodic solutions for a prescribed-energy problem of singular Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2705-2715. doi: 10.3934/dcds.2017116 |
[14] |
Shiwang Ma. Nontrivial periodic solutions for asymptotically linear hamiltonian systems at resonance. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2361-2380. doi: 10.3934/cpaa.2013.12.2361 |
[15] |
Laura Olian Fannio. Multiple periodic solutions of Hamiltonian systems with strong resonance at infinity. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 251-264. doi: 10.3934/dcds.1997.3.251 |
[16] |
Liang Ding, Rongrong Tian, Jinlong Wei. Nonconstant periodic solutions with any fixed energy for singular Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1617-1625. doi: 10.3934/dcdsb.2018222 |
[17] |
Paolo Perfetti. Hamiltonian equations on $\mathbb{T}^\infty$ and almost-periodic solutions. Conference Publications, 2001, 2001 (Special) : 303-309. doi: 10.3934/proc.2001.2001.303 |
[18] |
Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 585-606. doi: 10.3934/dcds.2019024 |
[19] |
Giuseppe Cordaro. Existence and location of periodic solutions to convex and non coercive Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 983-996. doi: 10.3934/dcds.2005.12.983 |
[20] |
Juhong Kuang, Weiyi Chen, Zhiming Guo. Periodic solutions with prescribed minimal period for second order even Hamiltonian systems. Communications on Pure and Applied Analysis, 2022, 21 (1) : 47-59. doi: 10.3934/cpaa.2021166 |
2021 Impact Factor: 0.737
Tools
Metrics
Other articles
by authors
[Back to Top]