March  2018, 10(1): 1-41. doi: 10.3934/jgm.2018001

Lagrange-d'alembert-poincaré equations by several stages

Departamento de Matemática, Universidad Nacional del Sur, Av. Alem 1253,8000 Bahía Blanca, Argentina

Received  June 2014 Revised  June 2017 Published  December 2017

The aim of this paper is to write explicit expression in terms of a given principal connection of the Lagrange-d'Alembert-Poincaré equations by several stages. This is obtained by using a reduced Lagrange-d'Alembert's Principle by several stages, extending methods known for the case of one stage in the previous literature. The case of Euler's disk is described as an illustrative example.

Citation: Hernán Cendra, Viviana A. Díaz. Lagrange-d'alembert-poincaré equations by several stages. Journal of Geometric Mechanics, 2018, 10 (1) : 1-41. doi: 10.3934/jgm.2018001
References:
[1]

R. Abraham and J. E. Marsden, Foundation of Mechanics, Addison Wesley, second edition, 1978.  Google Scholar

[2]

V. I. Arnold, Mathematical Methods of Classical Mechanics, volume60 of Graduate Texts in Mathematics. Springer Verlag, second edition, 1989.  Google Scholar

[3]

L. BatesH. Graumann and C. MacDonnell, Examples of Gauge conservation laws in nonholonomic systems, Rep. Math. Phys., 37 (1996), 295-308.  doi: 10.1016/0034-4877(96)84069-9.  Google Scholar

[4]

L. Bates and J. Sniatycki, Nonholonomic reduction, Reports on Math. Phys., 32 (1993), 99-115.  doi: 10.1016/0034-4877(93)90073-N.  Google Scholar

[5]

A. M. Bloch, Nonholonomic Mechanics and Control, volume24 of Interdisciplinary Applied Mathematics. Springer Verlag, 2003.  Google Scholar

[6]

A. M. BlochJ. E. KrishnaprasadJ. E. Marsden and R. Murray, Nonholonomic mechanical systems with symmetry, Arch. Rat. Mech. An., 136 (1996), 21-99.  doi: 10.1007/BF02199365.  Google Scholar

[7]

F. CantrijnM. deLeónJ. C. Marrero and D. Martín de Diego, Reduction of constrained systems with symmetries, J. Math. Phys., 40 (1999), 795-820.  doi: 10.1063/1.532686.  Google Scholar

[8]

J. J. Cariñena and M. F. Rañada, Lagrangian systems with constraints: A geometric approach to the method of Lagrange multipliers, J. Phys. A: Math. Gen., 26 (1993), 1335-1351.  doi: 10.1088/0305-4470/26/6/016.  Google Scholar

[9]

H. Cendra and V. A. Díaz, The Lagrange-d'Alembert-Poincaré equations and integrability for the Euler's disk, Regular and Chaotic Dynamics, 12 (2007), 56-67.  doi: 10.1134/S1560354707010054.  Google Scholar

[10]

H. CendraJ. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction and nonholonomic systems, Mathematics Unlimited and Beyond, Springer, (2001), 221-273.   Google Scholar

[11]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Memoirs of the AMS, 152 (2001), x+108 pp.  Google Scholar

[12]

H. Cendra, J. E. Marsden, T. S. Ratiu and H. Yoshimura, Dirac-Weinstein reduction of Dirac anchored vector bundles, 2009, preprint. Google Scholar

[13]

J. CortésM. l deLeónJ.C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids, Discrete Contin. Dyn. Syst., 24 (2009), 213-271.  doi: 10.3934/dcds.2009.24.213.  Google Scholar

[14]

M. deLeón and D. Martínde Diego, On the geometry of non-holonomic Lagrangian systems, J. Math. Phys., 37 (1996), 3389-3414.  doi: 10.1063/1.531571.  Google Scholar

[15]

M. deLeónJ.C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A, 38 (2005), R241-R308.   Google Scholar

[16]

K. EhlersJ. KoillerR. Montgomery and P. M. Ríos, Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization, The Breath of symplectic and Poisson geometry. Prog. Math., 232 (2005), 75-120.   Google Scholar

[17]

R. L. Fernandes, Lie algebroids, holonomy and characteristic classes, Adv. Math., 170 (2002), 119-179.   Google Scholar

[18]

D.D. HolmJ.E. Marsden and T.S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81.   Google Scholar

[19]

W. S. Koon and J. E. Marsden, Optimal control for holonomic and nonholonomic mechanical systems with syummetry and Lagrangian reduction, SIAM J. Control Optim., 35 (1997), 901-929.   Google Scholar

[20]

Ch.M. Marle, Reduction of constrained mechanical systems and stability of relative equilibria, Commun. Math. Phys., 174 (1995), 295-318.   Google Scholar

[21]

Ch.M. Marle, Various approaches to conservative and nonconservative nonholonomic systems, Rep. Math. Phys., 42 (1998), 211-229.   Google Scholar

[22]

J. E. Marsden, G. Misiolek, J. P. Ortega, M. Perlmutter and T. S. Ratiu, Hamiltonian Reduction by Stages Number 1913 in Hamiltonian Reduction by Stages. Springer, 2007.  Google Scholar

[23]

J. E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, volume17. Springer-Verlag, New York, 1994. Second edition, 1999.  Google Scholar

[24]

T. Mestdag, Lagrangian reduction by stages for non-holonomic systems in a Lie algebroid framework, J. Phys. A, 38 (2005), 10157-10179.   Google Scholar

[25]

J. I. Neimark and N. A. Fufaev, Dynamics of Nonholonomic Systems, Translations of the American Mathematical Society, Providence, Rhode Island, 1972.  Google Scholar

[26]

A. M. Vershik, Classical and Non-Classical Dynamics with Constraints, volume 1108 of Global Analysis-Studies and Applications I. Lecture Notes in Mathematics. Springer, 2002. Google Scholar

[27]

A. M. Vershik and L. D. Faddeev, Differential geometry and Lagrangian mechanics with constraints, Sov. Phys. Dokl., 17 (1972), 34-36.   Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundation of Mechanics, Addison Wesley, second edition, 1978.  Google Scholar

[2]

V. I. Arnold, Mathematical Methods of Classical Mechanics, volume60 of Graduate Texts in Mathematics. Springer Verlag, second edition, 1989.  Google Scholar

[3]

L. BatesH. Graumann and C. MacDonnell, Examples of Gauge conservation laws in nonholonomic systems, Rep. Math. Phys., 37 (1996), 295-308.  doi: 10.1016/0034-4877(96)84069-9.  Google Scholar

[4]

L. Bates and J. Sniatycki, Nonholonomic reduction, Reports on Math. Phys., 32 (1993), 99-115.  doi: 10.1016/0034-4877(93)90073-N.  Google Scholar

[5]

A. M. Bloch, Nonholonomic Mechanics and Control, volume24 of Interdisciplinary Applied Mathematics. Springer Verlag, 2003.  Google Scholar

[6]

A. M. BlochJ. E. KrishnaprasadJ. E. Marsden and R. Murray, Nonholonomic mechanical systems with symmetry, Arch. Rat. Mech. An., 136 (1996), 21-99.  doi: 10.1007/BF02199365.  Google Scholar

[7]

F. CantrijnM. deLeónJ. C. Marrero and D. Martín de Diego, Reduction of constrained systems with symmetries, J. Math. Phys., 40 (1999), 795-820.  doi: 10.1063/1.532686.  Google Scholar

[8]

J. J. Cariñena and M. F. Rañada, Lagrangian systems with constraints: A geometric approach to the method of Lagrange multipliers, J. Phys. A: Math. Gen., 26 (1993), 1335-1351.  doi: 10.1088/0305-4470/26/6/016.  Google Scholar

[9]

H. Cendra and V. A. Díaz, The Lagrange-d'Alembert-Poincaré equations and integrability for the Euler's disk, Regular and Chaotic Dynamics, 12 (2007), 56-67.  doi: 10.1134/S1560354707010054.  Google Scholar

[10]

H. CendraJ. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction and nonholonomic systems, Mathematics Unlimited and Beyond, Springer, (2001), 221-273.   Google Scholar

[11]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Memoirs of the AMS, 152 (2001), x+108 pp.  Google Scholar

[12]

H. Cendra, J. E. Marsden, T. S. Ratiu and H. Yoshimura, Dirac-Weinstein reduction of Dirac anchored vector bundles, 2009, preprint. Google Scholar

[13]

J. CortésM. l deLeónJ.C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids, Discrete Contin. Dyn. Syst., 24 (2009), 213-271.  doi: 10.3934/dcds.2009.24.213.  Google Scholar

[14]

M. deLeón and D. Martínde Diego, On the geometry of non-holonomic Lagrangian systems, J. Math. Phys., 37 (1996), 3389-3414.  doi: 10.1063/1.531571.  Google Scholar

[15]

M. deLeónJ.C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A, 38 (2005), R241-R308.   Google Scholar

[16]

K. EhlersJ. KoillerR. Montgomery and P. M. Ríos, Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization, The Breath of symplectic and Poisson geometry. Prog. Math., 232 (2005), 75-120.   Google Scholar

[17]

R. L. Fernandes, Lie algebroids, holonomy and characteristic classes, Adv. Math., 170 (2002), 119-179.   Google Scholar

[18]

D.D. HolmJ.E. Marsden and T.S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81.   Google Scholar

[19]

W. S. Koon and J. E. Marsden, Optimal control for holonomic and nonholonomic mechanical systems with syummetry and Lagrangian reduction, SIAM J. Control Optim., 35 (1997), 901-929.   Google Scholar

[20]

Ch.M. Marle, Reduction of constrained mechanical systems and stability of relative equilibria, Commun. Math. Phys., 174 (1995), 295-318.   Google Scholar

[21]

Ch.M. Marle, Various approaches to conservative and nonconservative nonholonomic systems, Rep. Math. Phys., 42 (1998), 211-229.   Google Scholar

[22]

J. E. Marsden, G. Misiolek, J. P. Ortega, M. Perlmutter and T. S. Ratiu, Hamiltonian Reduction by Stages Number 1913 in Hamiltonian Reduction by Stages. Springer, 2007.  Google Scholar

[23]

J. E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, volume17. Springer-Verlag, New York, 1994. Second edition, 1999.  Google Scholar

[24]

T. Mestdag, Lagrangian reduction by stages for non-holonomic systems in a Lie algebroid framework, J. Phys. A, 38 (2005), 10157-10179.   Google Scholar

[25]

J. I. Neimark and N. A. Fufaev, Dynamics of Nonholonomic Systems, Translations of the American Mathematical Society, Providence, Rhode Island, 1972.  Google Scholar

[26]

A. M. Vershik, Classical and Non-Classical Dynamics with Constraints, volume 1108 of Global Analysis-Studies and Applications I. Lecture Notes in Mathematics. Springer, 2002. Google Scholar

[27]

A. M. Vershik and L. D. Faddeev, Differential geometry and Lagrangian mechanics with constraints, Sov. Phys. Dokl., 17 (1972), 34-36.   Google Scholar

[1]

E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1

[2]

Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67

[3]

Gennadi Sardanashvily. Lagrangian dynamics of submanifolds. Relativistic mechanics. Journal of Geometric Mechanics, 2012, 4 (1) : 99-110. doi: 10.3934/jgm.2012.4.99

[4]

Juan Carlos Marrero, David Martín de Diego, Ari Stern. Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 367-397. doi: 10.3934/dcds.2015.35.367

[5]

Sergio Grillo, Marcela Zuccalli. Variational reduction of Lagrangian systems with general constraints. Journal of Geometric Mechanics, 2012, 4 (1) : 49-88. doi: 10.3934/jgm.2012.4.49

[6]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of discrete mechanical systems by stages. Journal of Geometric Mechanics, 2016, 8 (1) : 35-70. doi: 10.3934/jgm.2016.8.35

[7]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems. Journal of Geometric Mechanics, 2010, 2 (1) : 69-111. doi: 10.3934/jgm.2010.2.69

[8]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[9]

L. Búa, T. Mestdag, M. Salgado. Symmetry reduction, integrability and reconstruction in $k$-symplectic field theory. Journal of Geometric Mechanics, 2015, 7 (4) : 395-429. doi: 10.3934/jgm.2015.7.395

[10]

Jan J. Sławianowski, Vasyl Kovalchuk, Agnieszka Martens, Barbara Gołubowska, Ewa E. Rożko. Essential nonlinearity implied by symmetry group. Problems of affine invariance in mechanics and physics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 699-733. doi: 10.3934/dcdsb.2012.17.699

[11]

Miguel Rodríguez-Olmos. Book review: Geometric mechanics and symmetry, by Darryl D. Holm, Tanya Schmah and Cristina Stoica. Journal of Geometric Mechanics, 2009, 1 (4) : 483-488. doi: 10.3934/jgm.2009.1.483

[12]

Sebastián Ferrer, Francisco Crespo. Alternative angle-based approach to the $\mathcal{KS}$-Map. An interpretation through symmetry and reduction. Journal of Geometric Mechanics, 2018, 10 (3) : 359-372. doi: 10.3934/jgm.2018013

[13]

Jean-Marie Souriau. On Geometric Mechanics. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 595-607. doi: 10.3934/dcds.2007.19.595

[14]

Gianne Derks. Book review: Geometric mechanics. Journal of Geometric Mechanics, 2009, 1 (2) : 267-270. doi: 10.3934/jgm.2009.1.267

[15]

Andrew D. Lewis. The physical foundations of geometric mechanics. Journal of Geometric Mechanics, 2017, 9 (4) : 487-574. doi: 10.3934/jgm.2017019

[16]

Jean-Claude Zambrini. Stochastic deformation of classical mechanics. Conference Publications, 2013, 2013 (special) : 807-813. doi: 10.3934/proc.2013.2013.807

[17]

Vieri Benci. Solitons and Bohmian mechanics. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 303-317. doi: 10.3934/dcds.2002.8.303

[18]

Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527-547. doi: 10.3934/jgm.2014.6.527

[19]

Jamie Cruz, Miguel Gutiérrez. Spiral motion in classical mechanics. Conference Publications, 2009, 2009 (Special) : 191-197. doi: 10.3934/proc.2009.2009.191

[20]

Cristina Stoica. An approximation theorem in classical mechanics. Journal of Geometric Mechanics, 2016, 8 (3) : 359-374. doi: 10.3934/jgm.2016011

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (130)
  • HTML views (360)
  • Cited by (0)

Other articles
by authors

[Back to Top]