We show that the Helmholtz conditions characterizing differential equations arising from variational problems can be expressed in terms of invariants of curves in a suitable Grassmann manifold.
Citation: |
A. Agrachev, D. Barilari and L. Rizzi, Curvature: A variational approach, preprint, arXiv: 1306. 5318v5.
![]() |
|
J. C. Álvarez Paiva
and C. E. Durán
, Geometric invariants of fanning curves, Adv. in Appl. Math., 42 (2009)
, 290-312.
doi: 10.1016/j.aam.2006.07.008.![]() ![]() ![]() |
|
I. Anderson
, Introduction to variational bicomplex, Contemp. Math., 132 (1992)
, 51-73.
![]() ![]() |
|
M. de León
and P. R. Rodrigues
, The inverse problem of Lagrangian dynamics for higher-order differential equations -a geometrical approach, Inverse Prob., 8 (1992)
, 525-540.
doi: 10.1088/0266-5611/8/4/006.![]() ![]() ![]() |
|
C. E. Durán
and D. Otero
, The projective symplectic geometry of higher order variational problems: Minimality conditions, J. Geom. Mech., 8 (2016)
, 305-322.
doi: 10.3934/jgm.2016009.![]() ![]() ![]() |
|
C. E. Durán
and C. Peixoto
, Geometry of fanning curves in divisible grassmannians, Diff. Geom. Appl., 49 (2016)
, 447-472.
doi: 10.1016/j.difgeo.2016.10.001.![]() ![]() ![]() |
|
C. E. Durán
and H. Vitório
, Moving planes, Jacobi curves and the dynamical approach to Finsler geometry, European Journal of Mathematics, 3 (2017)
, 1245-1274.
![]() ![]() |
|
H. Flanders
, The Schwarzian as a curvature, J. Differential Geometry, 4 (1970)
, 515-519.
doi: 10.4310/jdg/1214429647.![]() ![]() ![]() |
|
S. R. Garcia
, The eigenstructure of complex symmetric operators, Recent Advances in Operator Theory, Operator Theory: Advances and Applications, 179 (2008)
, 169-183.
![]() ![]() |
|
I. Gelfand and S. Fomin, Calculus of Variations, Silverman Prentice-Hall, Inc., Englewood Cliffs, N. J. 1963.
![]() ![]() |
|
P. Piccione and D. V. Tausk, A students' guide to symplectic spaces, Grassmannians and Maslov index, Publicações Matemáticas do IMPA, Rio de Janeiro, 2008.
![]() ![]() |
|
W. Sarlet
, E. Engels
and L. Y. Bahar
, Time-dependent linear systems derivable from a variational principle, Int. J. Eng. Sci., 20 (1982)
, 55-66.
doi: 10.1016/0020-7225(82)90072-6.![]() ![]() ![]() |
|
P. Vassiliou and I. Lisle, Geometric Approaches to Differential Equations, Australian Mathematical Society Lecture Series, Cambridge University Press, 2000.
![]() |
|
E. J. Wilczynski, Projective Differential Geometry of Curves and Ruled Surfaces, Chelsea Publishing Co., New York, 1962.
![]() ![]() |