
-
Previous Article
Symmetries of line bundles and Noether theorem for time-dependent nonholonomic systems
- JGM Home
- This Issue
- Next Article
A note on time-optimal paths on perturbed spheroid
1. | Jagiellonian University, Faculty of Mathematics and Computer Science, ul. Prof. St. Lojasiewicza 6, 30 - 348 Kraków, Poland |
2. | Gdynia Maritime University, Faculty of Navigation, Al. Jana Pawla Ⅱ 3, 81-345 Gdynia, Poland |
We consider Zermelo's problem of navigation on a spheroid in the presence of space-dependent perturbation $W$ determined by a weak velocity vector field, $|W|_h<1$. The approach is purely geometric with application of Finsler metric of Randers type making use of the corresponding optimal control represented by a time-minimal ship's heading $\varphi(t)$ (a steering direction). A detailed exposition including investigation of the navigational quantities is provided under a rotational vector field. This demonstrates, in particular, a preservation of the optimal control $\varphi(t)$ of the time-efficient trajectories in the presence and absence of acting perturbation. Such navigational treatment of the problem leads to some simple relations between the background Riemannian and the resulting Finsler geodesics, thought of the deformed Riemannian paths. Also, we show some connections with Clairaut's relation and a collision problem. The study is illustrated with an example considered on an oblate ellipsoid.
References:
[1] |
The International Maritime Organization (IMO), COLREG: Convention on the International Regulations for Preventing Collisions at Sea, London, United Kingdom, 2004. |
[2] |
N. Aldea and P. Kopacz,
Generalized Zermelo navigation on Hermitian manifolds under mild wind, Diff. Geom. Appl., 54 (2017), 325-343.
doi: 10.1016/j.difgeo.2017.05.007. |
[3] |
N. Aldea and P. Kopacz,
Generalized Zermelo navigation on Hermitian manifolds with a critical wind, Results Math., 72 (2017), 2165-2180.
doi: 10.1007/s00025-017-0757-6. |
[4] |
K. J. Arrow,
On the use of winds in flight planning, J. Meteor., 6 (1949), 150-159.
|
[5] |
D. Bao and C. Robles, Ricci and flag curvatures in Finsler geometry, in A sampler of Riemann-Finsler geometry (eds. D. Bao et al.), Math. Sci. Res. Inst. Publ., 50 (2004), Cambridge Univ. Press, 197-259. |
[6] |
D. Bao, C. Robles and Z. Shen,
Zermelo navigation on Riemannian manifolds, J. Diff. Geom., 66 (2004), 377-435.
|
[7] |
D. C. Brody, G. W. Gibbons and D. M. Meier, Time-optimal navigation through quantum wind,
New J. Phys., 17 (2015), 033048, 8pp.
doi: 10.1088/1367-2630/17/3/033048. |
[8] |
D. C. Brody, G. W. Gibbons and D. M. Meier,
A Riemannian approach to Randers geodesics, J. Geom. Phys., 106 (2016), 98-101.
doi: 10.1016/j.geomphys.2016.03.019. |
[9] |
D. C. Brody and D. M. Meier, Solution to the quantum Zermelo navigation problem,
Phys. Rev. Lett., 114 (2015), 100502. |
[10] |
E. Caponio, M. A. Javaloyes and M. Sànchez, Wind Finslerian structures: from Zermelo's navigation to the causality of spacetimes, preprint,
arXiv: 1407.5494. |
[11] |
C. Carathéodory,
Calculus of Variations and Partial Differential Equations of the First Order, San Francisco-London-Amsterdam, 1965. |
[12] |
S.-S. Chern and Z. Shen,
Riemann-Finsler Geometry, Nankai tracts in mathematics, World Scientific, River Edge (N. J.), London, Singapore, 2005.
doi: 10.1142/5263. |
[13] |
M. A. Earle,
Sphere to spheroid comparisons, J. Navigation, 59 (2006), 491-496.
|
[14] |
A. de Mira Fernandes,
Sul problema brachistocrono di Zermelo, Rendiconti della R. Acc. dei Lincei, XV (1932), 47-52.
|
[15] |
C. A. R. Herdeiro, Mira Fernandes and a generalised Zermelo problem: Purely geometric
formulations, Bol. Soc. Port. Mat., 2010, Special Issue. Publication date estimated, 179-191. |
[16] |
M. R. Jardin,
Toward Real-Time en Route Air Traffic Control Optimization, Ph. D thesis, Stanford University, 2003. |
[17] |
A. B. Katok,
Ergodic perturbations of degenerate integrable Hamiltonian systems, Math. USSR Izv., 37 (1973), 539-576.
|
[18] |
P. Kopacz, On generalization of Zermelo navigation problem on Riemannian manifolds, preprint, arXiv: 1604.06487. |
[19] |
P. Kopacz,
Application of planar Randers geodesics with river-type perturbation in search models, Appl. Math. Model., 49 (2017), 531-553.
doi: 10.1016/j.apm.2017.05.007. |
[20] |
P. Kopacz,
A note on generalization of Zermelo navigation problem on Riemannian manifolds with strong perturbation, An. Sti. U. Ovid. Co.-Mat., 25 (2017), 107-123.
|
[21] |
P. Kopacz,
Application of codimension one foliation in Zermelo's problem on Riemannian manifolds, Diff. Geom. Appl., 35 (2014), 334-349.
doi: 10.1016/j.difgeo.2014.04.007. |
[22] |
P. Kopacz, Proposal on a Riemannian approach to path modeling in a navigational decision
support system, in Activities of Transport Telematics. TST 2013. Communications in Computer and Information Science 395 (eds. J. Mikulski), Springer, Berlin, Heidelberg, (2013),
294-302. |
[23] |
T. Levi-Civita,
Über Zermelo's Luftfahrtproblem, ZAMM-Z. Angew. Math. Me., 11 (1931), 314-322.
|
[24] |
B. Manià,
Sopra un problema di navigazione di Zermelo, Math. Ann., 133 (1937), 584-599.
doi: 10.1007/BF01571651. |
[25] |
A. Pallikaris and G. Latsas,
New Algorithm for Great Elliptic Sailing (GES), J. Navigation, 62 (2012), 493-507.
|
[26] |
A. Pressley,
Elementary Differential Geometry, Springer Undergraduate Mathematics Series, Springer-Verlag, London, 2010.
doi: 10.1007/978-1-84882-891-9. |
[27] |
C. Robles,
Geodesics in Randers spaces of constant curvature, T. Am. Math. Soc., 359 (2007), 1633-1651.
doi: 10.1090/S0002-9947-06-04051-7. |
[28] |
B. Russell and S. Stepney, Zermelo navigation in the quantum brachistochrone,
J. Phys. A - Math. Theor., 48 (2015), 115303, 29pp.
doi: 10.1088/1751-8113/48/11/115303. |
[29] |
Z. Shen,
Finsler Metrics with ${\bf{K}} = 0$ and ${\bf{S}} = 0$, Can. J. Math., 55 (2003), 112-132.
doi: 10.4153/CJM-2003-005-6. |
[30] |
W.-K. Tseng, M. A. Earle and J.-L. Guo,
Direct and inverse solutions with geodetic latitude in terms of longitude for rhumb line sailing, J. Navigation, 65 (2012), 549-559.
|
[31] |
A. Weintrit and P. Kopacz, Computational algorithms implemented in marine navigation
electronic systems, in Telematics in the Transport Environment. TST 2012. Communications
in Computer and Information Science 329 (eds. J. Mikulski), Springer, Berlin, Heidelberg,
(2012), 148-158. |
[32] |
A. Weintrit and P. Kopacz, A Novel Approach to Loxodrome (Rhumb Line), Orthodrome
(Great Circle) and Geodesic Line in ECDIS and Navigation in General, in Methods and
Algorithms in Navigation (eds. A. Weintrit and T. Neumann), CRC Press, (2011), 123-132. |
[33] |
R. Yoshikawa and S. V. Sabau,
Kropina metrics and Zermelo navigation on Riemannian manifolds, Geom. Dedicata, 171 (2014), 119-148.
doi: 10.1007/s10711-013-9892-8. |
[34] |
E. Zermelo,
Über die Navigation in der Luft als Problem der Variationsrechnung, Jahresber. Deutsch. Math.-Verein., 89 (1930), 44-48.
|
[35] |
E. Zermelo,
Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung, ZAMM-Z. Angew. Math. Me., 11 (1931), 114-124.
|
[36] |
W. Ziller,
Geometry of the Katok examples, Ergodic Theory Dyn. Syst., 3 (1983), 135-157.
doi: 10.1017/S0143385700001851. |
show all references
References:
[1] |
The International Maritime Organization (IMO), COLREG: Convention on the International Regulations for Preventing Collisions at Sea, London, United Kingdom, 2004. |
[2] |
N. Aldea and P. Kopacz,
Generalized Zermelo navigation on Hermitian manifolds under mild wind, Diff. Geom. Appl., 54 (2017), 325-343.
doi: 10.1016/j.difgeo.2017.05.007. |
[3] |
N. Aldea and P. Kopacz,
Generalized Zermelo navigation on Hermitian manifolds with a critical wind, Results Math., 72 (2017), 2165-2180.
doi: 10.1007/s00025-017-0757-6. |
[4] |
K. J. Arrow,
On the use of winds in flight planning, J. Meteor., 6 (1949), 150-159.
|
[5] |
D. Bao and C. Robles, Ricci and flag curvatures in Finsler geometry, in A sampler of Riemann-Finsler geometry (eds. D. Bao et al.), Math. Sci. Res. Inst. Publ., 50 (2004), Cambridge Univ. Press, 197-259. |
[6] |
D. Bao, C. Robles and Z. Shen,
Zermelo navigation on Riemannian manifolds, J. Diff. Geom., 66 (2004), 377-435.
|
[7] |
D. C. Brody, G. W. Gibbons and D. M. Meier, Time-optimal navigation through quantum wind,
New J. Phys., 17 (2015), 033048, 8pp.
doi: 10.1088/1367-2630/17/3/033048. |
[8] |
D. C. Brody, G. W. Gibbons and D. M. Meier,
A Riemannian approach to Randers geodesics, J. Geom. Phys., 106 (2016), 98-101.
doi: 10.1016/j.geomphys.2016.03.019. |
[9] |
D. C. Brody and D. M. Meier, Solution to the quantum Zermelo navigation problem,
Phys. Rev. Lett., 114 (2015), 100502. |
[10] |
E. Caponio, M. A. Javaloyes and M. Sànchez, Wind Finslerian structures: from Zermelo's navigation to the causality of spacetimes, preprint,
arXiv: 1407.5494. |
[11] |
C. Carathéodory,
Calculus of Variations and Partial Differential Equations of the First Order, San Francisco-London-Amsterdam, 1965. |
[12] |
S.-S. Chern and Z. Shen,
Riemann-Finsler Geometry, Nankai tracts in mathematics, World Scientific, River Edge (N. J.), London, Singapore, 2005.
doi: 10.1142/5263. |
[13] |
M. A. Earle,
Sphere to spheroid comparisons, J. Navigation, 59 (2006), 491-496.
|
[14] |
A. de Mira Fernandes,
Sul problema brachistocrono di Zermelo, Rendiconti della R. Acc. dei Lincei, XV (1932), 47-52.
|
[15] |
C. A. R. Herdeiro, Mira Fernandes and a generalised Zermelo problem: Purely geometric
formulations, Bol. Soc. Port. Mat., 2010, Special Issue. Publication date estimated, 179-191. |
[16] |
M. R. Jardin,
Toward Real-Time en Route Air Traffic Control Optimization, Ph. D thesis, Stanford University, 2003. |
[17] |
A. B. Katok,
Ergodic perturbations of degenerate integrable Hamiltonian systems, Math. USSR Izv., 37 (1973), 539-576.
|
[18] |
P. Kopacz, On generalization of Zermelo navigation problem on Riemannian manifolds, preprint, arXiv: 1604.06487. |
[19] |
P. Kopacz,
Application of planar Randers geodesics with river-type perturbation in search models, Appl. Math. Model., 49 (2017), 531-553.
doi: 10.1016/j.apm.2017.05.007. |
[20] |
P. Kopacz,
A note on generalization of Zermelo navigation problem on Riemannian manifolds with strong perturbation, An. Sti. U. Ovid. Co.-Mat., 25 (2017), 107-123.
|
[21] |
P. Kopacz,
Application of codimension one foliation in Zermelo's problem on Riemannian manifolds, Diff. Geom. Appl., 35 (2014), 334-349.
doi: 10.1016/j.difgeo.2014.04.007. |
[22] |
P. Kopacz, Proposal on a Riemannian approach to path modeling in a navigational decision
support system, in Activities of Transport Telematics. TST 2013. Communications in Computer and Information Science 395 (eds. J. Mikulski), Springer, Berlin, Heidelberg, (2013),
294-302. |
[23] |
T. Levi-Civita,
Über Zermelo's Luftfahrtproblem, ZAMM-Z. Angew. Math. Me., 11 (1931), 314-322.
|
[24] |
B. Manià,
Sopra un problema di navigazione di Zermelo, Math. Ann., 133 (1937), 584-599.
doi: 10.1007/BF01571651. |
[25] |
A. Pallikaris and G. Latsas,
New Algorithm for Great Elliptic Sailing (GES), J. Navigation, 62 (2012), 493-507.
|
[26] |
A. Pressley,
Elementary Differential Geometry, Springer Undergraduate Mathematics Series, Springer-Verlag, London, 2010.
doi: 10.1007/978-1-84882-891-9. |
[27] |
C. Robles,
Geodesics in Randers spaces of constant curvature, T. Am. Math. Soc., 359 (2007), 1633-1651.
doi: 10.1090/S0002-9947-06-04051-7. |
[28] |
B. Russell and S. Stepney, Zermelo navigation in the quantum brachistochrone,
J. Phys. A - Math. Theor., 48 (2015), 115303, 29pp.
doi: 10.1088/1751-8113/48/11/115303. |
[29] |
Z. Shen,
Finsler Metrics with ${\bf{K}} = 0$ and ${\bf{S}} = 0$, Can. J. Math., 55 (2003), 112-132.
doi: 10.4153/CJM-2003-005-6. |
[30] |
W.-K. Tseng, M. A. Earle and J.-L. Guo,
Direct and inverse solutions with geodetic latitude in terms of longitude for rhumb line sailing, J. Navigation, 65 (2012), 549-559.
|
[31] |
A. Weintrit and P. Kopacz, Computational algorithms implemented in marine navigation
electronic systems, in Telematics in the Transport Environment. TST 2012. Communications
in Computer and Information Science 329 (eds. J. Mikulski), Springer, Berlin, Heidelberg,
(2012), 148-158. |
[32] |
A. Weintrit and P. Kopacz, A Novel Approach to Loxodrome (Rhumb Line), Orthodrome
(Great Circle) and Geodesic Line in ECDIS and Navigation in General, in Methods and
Algorithms in Navigation (eds. A. Weintrit and T. Neumann), CRC Press, (2011), 123-132. |
[33] |
R. Yoshikawa and S. V. Sabau,
Kropina metrics and Zermelo navigation on Riemannian manifolds, Geom. Dedicata, 171 (2014), 119-148.
doi: 10.1007/s10711-013-9892-8. |
[34] |
E. Zermelo,
Über die Navigation in der Luft als Problem der Variationsrechnung, Jahresber. Deutsch. Math.-Verein., 89 (1930), 44-48.
|
[35] |
E. Zermelo,
Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung, ZAMM-Z. Angew. Math. Me., 11 (1931), 114-124.
|
[36] |
W. Ziller,
Geometry of the Katok examples, Ergodic Theory Dyn. Syst., 3 (1983), 135-157.
doi: 10.1017/S0143385700001851. |




























[1] |
Patrick Foulon, Vladimir S. Matveev. Zermelo deformation of finsler metrics by killing vector fields. Electronic Research Announcements, 2018, 25: 1-7. doi: 10.3934/era.2018.25.001 |
[2] |
Gautier Picot. Shooting and numerical continuation methods for computing time-minimal and energy-minimal trajectories in the Earth-Moon system using low propulsion. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 245-269. doi: 10.3934/dcdsb.2012.17.245 |
[3] |
Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1025-1038. doi: 10.3934/cpaa.2021004 |
[4] |
Martin Frank, Armin Fügenschuh, Michael Herty, Lars Schewe. The coolest path problem. Networks and Heterogeneous Media, 2010, 5 (1) : 143-162. doi: 10.3934/nhm.2010.5.143 |
[5] |
Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437-497. doi: 10.3934/jmd.2014.8.437 |
[6] |
Erik I. Verriest. Generalizations of Naismith's problem: Minimal transit time between two points in a heterogenous terrian. Conference Publications, 2011, 2011 (Special) : 1413-1422. doi: 10.3934/proc.2011.2011.1413 |
[7] |
Louis Caccetta, Ian Loosen, Volker Rehbock. Computational aspects of the optimal transit path problem. Journal of Industrial and Management Optimization, 2008, 4 (1) : 95-105. doi: 10.3934/jimo.2008.4.95 |
[8] |
Rabah Amir, Igor V. Evstigneev. On Zermelo's theorem. Journal of Dynamics and Games, 2017, 4 (3) : 191-194. doi: 10.3934/jdg.2017011 |
[9] |
Suddhasattwa Das, Yoshitaka Saiki, Evelyn Sander, James A. Yorke. Solving the Babylonian problem of quasiperiodic rotation rates. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2279-2305. doi: 10.3934/dcdss.2019145 |
[10] |
Paolo Antonelli, Daniel Marahrens, Christof Sparber. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 703-715. doi: 10.3934/dcds.2012.32.703 |
[11] |
Roland Gunesch, Philipp Kunde. Weakly mixing diffeomorphisms preserving a measurable Riemannian metric with prescribed Liouville rotation behavior. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1615-1655. doi: 10.3934/dcds.2018067 |
[12] |
Christophe Cheverry, Thierry Paul. On some geometry of propagation in diffractive time scales. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 499-538. doi: 10.3934/dcds.2012.32.499 |
[13] |
Hassan Emamirad, Arnaud Rougirel. Feynman path formula for the time fractional Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3391-3400. doi: 10.3934/dcdss.2020246 |
[14] |
Philipp Bader, Sergio Blanes, Fernando Casas, Mechthild Thalhammer. Efficient time integration methods for Gross-Pitaevskii equations with rotation term. Journal of Computational Dynamics, 2019, 6 (2) : 147-169. doi: 10.3934/jcd.2019008 |
[15] |
Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143 |
[16] |
Lydia Ouaili. Minimal time of null controllability of two parabolic equations. Mathematical Control and Related Fields, 2020, 10 (1) : 89-112. doi: 10.3934/mcrf.2019031 |
[17] |
Marc-Auréle Lagache, Ulysse Serres, Vincent Andrieu. Minimal time synthesis for a kinematic drone model. Mathematical Control and Related Fields, 2017, 7 (2) : 259-288. doi: 10.3934/mcrf.2017009 |
[18] |
Chunhui Qiu, Rirong Yuan. On the Dirichlet problem for fully nonlinear elliptic equations on annuli of metric cones. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5707-5730. doi: 10.3934/dcds.2017247 |
[19] |
Annalisa Iuorio, Christian Kuehn, Peter Szmolyan. Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1269-1290. doi: 10.3934/dcdss.2020073 |
[20] |
Guoliang Xue, Weiyi Zhang, Tie Wang, Krishnaiyan Thulasiraman. On the partial path protection scheme for WDM optical networks and polynomial time computability of primary and secondary paths. Journal of Industrial and Management Optimization, 2007, 3 (4) : 625-643. doi: 10.3934/jimo.2007.3.625 |
2020 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]