June  2018, 10(2): 173-187. doi: 10.3934/jgm.2018006

Symmetries of line bundles and Noether theorem for time-dependent nonholonomic systems

Mathematical Institute SANU, Serbian Academy of Sciences and Arts, Kneza Mihaila 36, 11000 Belgrade, Serbia

Received  September 2016 Revised  March 2018 Published  May 2018

We consider Noether symmetries of the equations defined by the sections of characteristic line bundles of nondegenerate 1-forms and of the associated perturbed systems. It appears that this framework can be used for time-dependent systems with constraints and nonconservative forces, allowing a quite simple and transparent formulation of the momentum equation and the Noether theorem in their general forms.

Citation: Božzidar Jovanović. Symmetries of line bundles and Noether theorem for time-dependent nonholonomic systems. Journal of Geometric Mechanics, 2018, 10 (2) : 173-187. doi: 10.3934/jgm.2018006
References:
[1]

V. I. Arnold, V. V. Kozlov and A. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Dynamical Systems, Ⅲ. Third Edition. Encyclopaedia Math. Sci. 3. Springer, Berlin, 2006.

[2]

P. Balseiro and N. Sansonetto, A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries, SIGMA, 12 (2016), Paper No. 018, 14 pages, arXiv: 1510.08314. doi: 10.3842/SIGMA.2016.018.

[3]

L. BatesH. Graumann and C. MacDonnell, Examples of gauge conservation laws in nonholonomic systems, Rep. Math. Phys., 37 (1996), 295-308.  doi: 10.1016/0034-4877(96)84069-9.

[4]

A. M. BlochP. S. KrishnaprasadJ. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal., 136 (1996), 21-99.  doi: 10.1007/BF02199365.

[5]

A. M. BlochJ. E. Marsden and D. V. Zenkov, Quasivelocities and symmetries in nonholonomic systems, Dynamical Systems, 24 (2009), 187-222.  doi: 10.1080/14689360802609344.

[6]

A. V. Borisov and I. S. Mamaev, Symmetries and reduction in nonholonomic mechanics, Regular and Chaotic Dynamics, 20 (2015), 553–604 doi: 10.1134/S1560354715050044.

[7]

A. V. BorisovI. S. Mamaev and I. A. Bizyaev, The jacobi integral in nonholonomic mechanics, Regular and Chaotic Dynamics, 20 (2015), 383-400.  doi: 10.1134/S1560354715030107.

[8]

F. Cantrjin and W. Sarlet, Generalizations of Noether's theorem in classical mechanics, SIAM Review, 23 (1981), 467-494.  doi: 10.1137/1023098.

[9]

F. CantrjnM. de LeonM. de Diego and J. Marrero, Reduction of nonholonomic mechanical systems with symmetries, Rep. Math. Phys, 42 (1998), 25-45.  doi: 10.1016/S0034-4877(98)80003-7.

[10]

M. Crampin, Constants of the motion in Lagrangian mechanics, Int. J. Theor. Phys., 16 (1977), 741-754.  doi: 10.1007/BF01807231.

[11]

M. Crampin and T. Mestdag, The Cartan form for constrained Lagrangian systems and the nonholonomic Noether theorem, Int. J. Geom. Methods. Mod. Phys., 8 (2011), 897-923, arXiv: 1101.3153. doi: 10.1142/S0219887811005452.

[12]

Dj. S. Djukić, Conservation laws in classical mechanics for quasi-coordinates, Arch. Ration. Mech. Anal., 56 (1974), 79-98.  doi: 10.1007/BF00279822.

[13]

Dj. S. Djukić and B. D. Vujanović, Noether's theory in the classical nonconservative mechanics, Acta Mech., 23 (1975), 17-27.  doi: 10.1007/BF01177666.

[14]

F. FassòA. Ramos and N. Sansonetto, The reaction-annihilator distribution and the nonholonomic Noether theorem for lifted actions, Regul. Chaotic Dyn., 12 (2007), 579-588.  doi: 10.1134/S1560354707060019.

[15]

F. FassòA. Giacobbe and N. Sansonetto, Gauge conservation laws and the momentum equation in nonholonomic mechanics, Reports in Mathematical Physics, 62 (2008), 345-367.  doi: 10.1016/S0034-4877(09)00005-6.

[16]

F. Fassò and N. Sansonetto, Conservation of energy and momenta in nonholonomic systems with affine constraints, Regular and Chaotic Dynamics, 20 (2015), 449-462, arXiv: 1505.01172. doi: 10.1134/S1560354715040048.

[17]

F. Fassò and N. Sansonetto, Conservation of 'moving' energy in nonholonomic systems with affine constraints and integrability of spheres on rotating surfaces, J. Nonlinear Sci., 26 (2016), 519-544, arXiv: 1503.06661. doi: 10.1007/s00332-015-9283-4.

[18]

E. Fiorani and A. Spiro, Lie algebras of conservation laws of variational ordinary differential equations, J. Geom. Phys., 88 (2015), 56-75, arXiv: 1411.6097. doi: 10.1016/j.geomphys.2014.11.005.

[19]

G. Giachetta, First integrals of non-holonomic systems and their generators, J. Phys. A: Math. Gen., 33 (2000), 5369-5389.  doi: 10.1088/0305-4470/33/30/308.

[20]

S. Hochgerner and L. C. Garcia-Naranjo, G-Chaplygin systems with internal symmetries, truncation, and an (almost) symplectic view of Chaplygin's ball, J. Geom. Mech., 1 (2009), 35-53, arXiv: 0810.5454. doi: 10.3934/jgm.2009.1.35.

[21]

B. Jovanović, Hamiltonization and integrability of the Chaplygin sphere in Rn, J. Nonlinear. Sci., 20 (2010), 569-593, arXiv: 0902.4397. doi: 10.1007/s00332-010-9067-9.

[22]

B. Jovanović, Noether symmetries and integrability in Hamiltonian time-dependent mechanics, Theoretical and Applied Mechanics, 43 (2016), 255-273, arXiv: 1608.07788.

[23]

B. Jovanović, Invariant measures of modified LR and L+R systems, Regular and Chaotic Dynamics, 20 (2015), 542-552, arXiv: 1508.04913. doi: 10.1134/S1560354715050032.

[24]

Y. Kosmann-Schwarzbach, The Noether Theorems, Invariance and Conservation Laws in the Twentieth Century, Springer, New York, 2011. doi: 10.1007/978-0-387-87868-3.

[25]

V. V. Kozlov and N. N. Kolesnikov, On theorems of dynamics, (Russian), Prikl. Mat. Mekh., 42 (1978), 28-33. 

[26]

P. Libermann and C. Marle, Symplectic Geometry, Analytical Mechanics, Riedel, Dordrecht, 1987. doi: 10.1007/978-94-009-3807-6.

[27]

C.-M. Marle, On symmetries and constants of motion in Hamiltonian systems with nonholonomic constraints, In Classical and Quantum Integrability (Warsaw, 2001), 223-242, Banach Center Publ. 59, Polish Acad. Sci. Warsaw, 2003. doi: 10.4064/bc59-0-12.

[28]

Dj. Mušicki, Noether's theorem for nonconservative systems in quasicoordinates, Theoretical and Applied Mechanics, 43 (2016), 1-17. 

[29]

E. Noether, Invariante variationsprobleme, Nachrichten von der Königlich Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, (1918), 235-257. 

[30]

S. Simić, On Noetherian approach to integrable cases of the motion of heavy top, Bull. Cl. Sci. Math. Nat. Sci. Math., 25 (2000), 133-156. 

show all references

References:
[1]

V. I. Arnold, V. V. Kozlov and A. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Dynamical Systems, Ⅲ. Third Edition. Encyclopaedia Math. Sci. 3. Springer, Berlin, 2006.

[2]

P. Balseiro and N. Sansonetto, A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries, SIGMA, 12 (2016), Paper No. 018, 14 pages, arXiv: 1510.08314. doi: 10.3842/SIGMA.2016.018.

[3]

L. BatesH. Graumann and C. MacDonnell, Examples of gauge conservation laws in nonholonomic systems, Rep. Math. Phys., 37 (1996), 295-308.  doi: 10.1016/0034-4877(96)84069-9.

[4]

A. M. BlochP. S. KrishnaprasadJ. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal., 136 (1996), 21-99.  doi: 10.1007/BF02199365.

[5]

A. M. BlochJ. E. Marsden and D. V. Zenkov, Quasivelocities and symmetries in nonholonomic systems, Dynamical Systems, 24 (2009), 187-222.  doi: 10.1080/14689360802609344.

[6]

A. V. Borisov and I. S. Mamaev, Symmetries and reduction in nonholonomic mechanics, Regular and Chaotic Dynamics, 20 (2015), 553–604 doi: 10.1134/S1560354715050044.

[7]

A. V. BorisovI. S. Mamaev and I. A. Bizyaev, The jacobi integral in nonholonomic mechanics, Regular and Chaotic Dynamics, 20 (2015), 383-400.  doi: 10.1134/S1560354715030107.

[8]

F. Cantrjin and W. Sarlet, Generalizations of Noether's theorem in classical mechanics, SIAM Review, 23 (1981), 467-494.  doi: 10.1137/1023098.

[9]

F. CantrjnM. de LeonM. de Diego and J. Marrero, Reduction of nonholonomic mechanical systems with symmetries, Rep. Math. Phys, 42 (1998), 25-45.  doi: 10.1016/S0034-4877(98)80003-7.

[10]

M. Crampin, Constants of the motion in Lagrangian mechanics, Int. J. Theor. Phys., 16 (1977), 741-754.  doi: 10.1007/BF01807231.

[11]

M. Crampin and T. Mestdag, The Cartan form for constrained Lagrangian systems and the nonholonomic Noether theorem, Int. J. Geom. Methods. Mod. Phys., 8 (2011), 897-923, arXiv: 1101.3153. doi: 10.1142/S0219887811005452.

[12]

Dj. S. Djukić, Conservation laws in classical mechanics for quasi-coordinates, Arch. Ration. Mech. Anal., 56 (1974), 79-98.  doi: 10.1007/BF00279822.

[13]

Dj. S. Djukić and B. D. Vujanović, Noether's theory in the classical nonconservative mechanics, Acta Mech., 23 (1975), 17-27.  doi: 10.1007/BF01177666.

[14]

F. FassòA. Ramos and N. Sansonetto, The reaction-annihilator distribution and the nonholonomic Noether theorem for lifted actions, Regul. Chaotic Dyn., 12 (2007), 579-588.  doi: 10.1134/S1560354707060019.

[15]

F. FassòA. Giacobbe and N. Sansonetto, Gauge conservation laws and the momentum equation in nonholonomic mechanics, Reports in Mathematical Physics, 62 (2008), 345-367.  doi: 10.1016/S0034-4877(09)00005-6.

[16]

F. Fassò and N. Sansonetto, Conservation of energy and momenta in nonholonomic systems with affine constraints, Regular and Chaotic Dynamics, 20 (2015), 449-462, arXiv: 1505.01172. doi: 10.1134/S1560354715040048.

[17]

F. Fassò and N. Sansonetto, Conservation of 'moving' energy in nonholonomic systems with affine constraints and integrability of spheres on rotating surfaces, J. Nonlinear Sci., 26 (2016), 519-544, arXiv: 1503.06661. doi: 10.1007/s00332-015-9283-4.

[18]

E. Fiorani and A. Spiro, Lie algebras of conservation laws of variational ordinary differential equations, J. Geom. Phys., 88 (2015), 56-75, arXiv: 1411.6097. doi: 10.1016/j.geomphys.2014.11.005.

[19]

G. Giachetta, First integrals of non-holonomic systems and their generators, J. Phys. A: Math. Gen., 33 (2000), 5369-5389.  doi: 10.1088/0305-4470/33/30/308.

[20]

S. Hochgerner and L. C. Garcia-Naranjo, G-Chaplygin systems with internal symmetries, truncation, and an (almost) symplectic view of Chaplygin's ball, J. Geom. Mech., 1 (2009), 35-53, arXiv: 0810.5454. doi: 10.3934/jgm.2009.1.35.

[21]

B. Jovanović, Hamiltonization and integrability of the Chaplygin sphere in Rn, J. Nonlinear. Sci., 20 (2010), 569-593, arXiv: 0902.4397. doi: 10.1007/s00332-010-9067-9.

[22]

B. Jovanović, Noether symmetries and integrability in Hamiltonian time-dependent mechanics, Theoretical and Applied Mechanics, 43 (2016), 255-273, arXiv: 1608.07788.

[23]

B. Jovanović, Invariant measures of modified LR and L+R systems, Regular and Chaotic Dynamics, 20 (2015), 542-552, arXiv: 1508.04913. doi: 10.1134/S1560354715050032.

[24]

Y. Kosmann-Schwarzbach, The Noether Theorems, Invariance and Conservation Laws in the Twentieth Century, Springer, New York, 2011. doi: 10.1007/978-0-387-87868-3.

[25]

V. V. Kozlov and N. N. Kolesnikov, On theorems of dynamics, (Russian), Prikl. Mat. Mekh., 42 (1978), 28-33. 

[26]

P. Libermann and C. Marle, Symplectic Geometry, Analytical Mechanics, Riedel, Dordrecht, 1987. doi: 10.1007/978-94-009-3807-6.

[27]

C.-M. Marle, On symmetries and constants of motion in Hamiltonian systems with nonholonomic constraints, In Classical and Quantum Integrability (Warsaw, 2001), 223-242, Banach Center Publ. 59, Polish Acad. Sci. Warsaw, 2003. doi: 10.4064/bc59-0-12.

[28]

Dj. Mušicki, Noether's theorem for nonconservative systems in quasicoordinates, Theoretical and Applied Mechanics, 43 (2016), 1-17. 

[29]

E. Noether, Invariante variationsprobleme, Nachrichten von der Königlich Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, (1918), 235-257. 

[30]

S. Simić, On Noetherian approach to integrable cases of the motion of heavy top, Bull. Cl. Sci. Math. Nat. Sci. Math., 25 (2000), 133-156. 

[1]

Stephen Anco, Maria Rosa, Maria Luz Gandarias. Conservation laws and symmetries of time-dependent generalized KdV equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 607-615. doi: 10.3934/dcdss.2018035

[2]

Angelo Favini, Gianluca Mola, Silvia Romanelli. Recovering time-dependent diffusion coefficients in a nonautonomous parabolic equation from energy measurements. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1439-1454. doi: 10.3934/dcdss.2022017

[3]

Masahiro Kubo, Noriaki Yamazaki. Elliptic-parabolic variational inequalities with time-dependent constraints. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 335-359. doi: 10.3934/dcds.2007.19.335

[4]

Francesco Di Plinio, Gregory S. Duane, Roger Temam. Time-dependent attractor for the Oscillon equation. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 141-167. doi: 10.3934/dcds.2011.29.141

[5]

Jin Takahashi, Eiji Yanagida. Time-dependent singularities in the heat equation. Communications on Pure and Applied Analysis, 2015, 14 (3) : 969-979. doi: 10.3934/cpaa.2015.14.969

[6]

Nicola Guglielmi, László Hatvani. On small oscillations of mechanical systems with time-dependent kinetic and potential energy. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 911-926. doi: 10.3934/dcds.2008.20.911

[7]

Colin J. Cotter, Michael John Priestley Cullen. Particle relabelling symmetries and Noether's theorem for vertical slice models. Journal of Geometric Mechanics, 2019, 11 (2) : 139-151. doi: 10.3934/jgm.2019007

[8]

Rehana Naz, Imran Naeem. Exact solutions of a Black-Scholes model with time-dependent parameters by utilizing potential symmetries. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2841-2851. doi: 10.3934/dcdss.2020122

[9]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems and Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

[10]

Chan Liu, Jin Wen, Zhidong Zhang. Reconstruction of the time-dependent source term in a stochastic fractional diffusion equation. Inverse Problems and Imaging, 2020, 14 (6) : 1001-1024. doi: 10.3934/ipi.2020053

[11]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[12]

Jungkwon Kim, Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. On Morawetz estimates with time-dependent weights for the Klein-Gordon equation. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6275-6288. doi: 10.3934/dcds.2020279

[13]

Holger Teismann. The Schrödinger equation with singular time-dependent potentials. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 705-722. doi: 10.3934/dcds.2000.6.705

[14]

Haixia Li. Lifespan of solutions to a parabolic type Kirchhoff equation with time-dependent nonlinearity. Evolution Equations and Control Theory, 2021, 10 (4) : 723-732. doi: 10.3934/eect.2020088

[15]

Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619

[16]

Zhijie Cao, Lijun Zhang. Symmetries and conservation laws of a time dependent nonlinear reaction-convection-diffusion equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2703-2717. doi: 10.3934/dcdss.2020218

[17]

Olivier Brahic. Infinitesimal gauge symmetries of closed forms. Journal of Geometric Mechanics, 2011, 3 (3) : 277-312. doi: 10.3934/jgm.2011.3.277

[18]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic and Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[19]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[20]

Yavar Kian, Alexander Tetlow. Hölder-stable recovery of time-dependent electromagnetic potentials appearing in a dynamical anisotropic Schrödinger equation. Inverse Problems and Imaging, 2020, 14 (5) : 819-839. doi: 10.3934/ipi.2020038

2021 Impact Factor: 0.737

Metrics

  • PDF downloads (240)
  • HTML views (198)
  • Cited by (4)

Other articles
by authors

[Back to Top]