June  2018, 10(2): 173-187. doi: 10.3934/jgm.2018006

Symmetries of line bundles and Noether theorem for time-dependent nonholonomic systems

Mathematical Institute SANU, Serbian Academy of Sciences and Arts, Kneza Mihaila 36, 11000 Belgrade, Serbia

Received  September 2016 Revised  March 2018 Published  May 2018

We consider Noether symmetries of the equations defined by the sections of characteristic line bundles of nondegenerate 1-forms and of the associated perturbed systems. It appears that this framework can be used for time-dependent systems with constraints and nonconservative forces, allowing a quite simple and transparent formulation of the momentum equation and the Noether theorem in their general forms.

Citation: Božzidar Jovanović. Symmetries of line bundles and Noether theorem for time-dependent nonholonomic systems. Journal of Geometric Mechanics, 2018, 10 (2) : 173-187. doi: 10.3934/jgm.2018006
References:
[1]

V. I. Arnold, V. V. Kozlov and A. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Dynamical Systems, Ⅲ. Third Edition. Encyclopaedia Math. Sci. 3. Springer, Berlin, 2006.  Google Scholar

[2]

P. Balseiro and N. Sansonetto, A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries, SIGMA, 12 (2016), Paper No. 018, 14 pages, arXiv: 1510.08314. doi: 10.3842/SIGMA.2016.018.  Google Scholar

[3]

L. BatesH. Graumann and C. MacDonnell, Examples of gauge conservation laws in nonholonomic systems, Rep. Math. Phys., 37 (1996), 295-308.  doi: 10.1016/0034-4877(96)84069-9.  Google Scholar

[4]

A. M. BlochP. S. KrishnaprasadJ. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal., 136 (1996), 21-99.  doi: 10.1007/BF02199365.  Google Scholar

[5]

A. M. BlochJ. E. Marsden and D. V. Zenkov, Quasivelocities and symmetries in nonholonomic systems, Dynamical Systems, 24 (2009), 187-222.  doi: 10.1080/14689360802609344.  Google Scholar

[6]

A. V. Borisov and I. S. Mamaev, Symmetries and reduction in nonholonomic mechanics, Regular and Chaotic Dynamics, 20 (2015), 553–604 doi: 10.1134/S1560354715050044.  Google Scholar

[7]

A. V. BorisovI. S. Mamaev and I. A. Bizyaev, The jacobi integral in nonholonomic mechanics, Regular and Chaotic Dynamics, 20 (2015), 383-400.  doi: 10.1134/S1560354715030107.  Google Scholar

[8]

F. Cantrjin and W. Sarlet, Generalizations of Noether's theorem in classical mechanics, SIAM Review, 23 (1981), 467-494.  doi: 10.1137/1023098.  Google Scholar

[9]

F. CantrjnM. de LeonM. de Diego and J. Marrero, Reduction of nonholonomic mechanical systems with symmetries, Rep. Math. Phys, 42 (1998), 25-45.  doi: 10.1016/S0034-4877(98)80003-7.  Google Scholar

[10]

M. Crampin, Constants of the motion in Lagrangian mechanics, Int. J. Theor. Phys., 16 (1977), 741-754.  doi: 10.1007/BF01807231.  Google Scholar

[11]

M. Crampin and T. Mestdag, The Cartan form for constrained Lagrangian systems and the nonholonomic Noether theorem, Int. J. Geom. Methods. Mod. Phys., 8 (2011), 897-923, arXiv: 1101.3153. doi: 10.1142/S0219887811005452.  Google Scholar

[12]

Dj. S. Djukić, Conservation laws in classical mechanics for quasi-coordinates, Arch. Ration. Mech. Anal., 56 (1974), 79-98.  doi: 10.1007/BF00279822.  Google Scholar

[13]

Dj. S. Djukić and B. D. Vujanović, Noether's theory in the classical nonconservative mechanics, Acta Mech., 23 (1975), 17-27.  doi: 10.1007/BF01177666.  Google Scholar

[14]

F. FassòA. Ramos and N. Sansonetto, The reaction-annihilator distribution and the nonholonomic Noether theorem for lifted actions, Regul. Chaotic Dyn., 12 (2007), 579-588.  doi: 10.1134/S1560354707060019.  Google Scholar

[15]

F. FassòA. Giacobbe and N. Sansonetto, Gauge conservation laws and the momentum equation in nonholonomic mechanics, Reports in Mathematical Physics, 62 (2008), 345-367.  doi: 10.1016/S0034-4877(09)00005-6.  Google Scholar

[16]

F. Fassò and N. Sansonetto, Conservation of energy and momenta in nonholonomic systems with affine constraints, Regular and Chaotic Dynamics, 20 (2015), 449-462, arXiv: 1505.01172. doi: 10.1134/S1560354715040048.  Google Scholar

[17]

F. Fassò and N. Sansonetto, Conservation of 'moving' energy in nonholonomic systems with affine constraints and integrability of spheres on rotating surfaces, J. Nonlinear Sci., 26 (2016), 519-544, arXiv: 1503.06661. doi: 10.1007/s00332-015-9283-4.  Google Scholar

[18]

E. Fiorani and A. Spiro, Lie algebras of conservation laws of variational ordinary differential equations, J. Geom. Phys., 88 (2015), 56-75, arXiv: 1411.6097. doi: 10.1016/j.geomphys.2014.11.005.  Google Scholar

[19]

G. Giachetta, First integrals of non-holonomic systems and their generators, J. Phys. A: Math. Gen., 33 (2000), 5369-5389.  doi: 10.1088/0305-4470/33/30/308.  Google Scholar

[20]

S. Hochgerner and L. C. Garcia-Naranjo, G-Chaplygin systems with internal symmetries, truncation, and an (almost) symplectic view of Chaplygin's ball, J. Geom. Mech., 1 (2009), 35-53, arXiv: 0810.5454. doi: 10.3934/jgm.2009.1.35.  Google Scholar

[21]

B. Jovanović, Hamiltonization and integrability of the Chaplygin sphere in Rn, J. Nonlinear. Sci., 20 (2010), 569-593, arXiv: 0902.4397. doi: 10.1007/s00332-010-9067-9.  Google Scholar

[22]

B. Jovanović, Noether symmetries and integrability in Hamiltonian time-dependent mechanics, Theoretical and Applied Mechanics, 43 (2016), 255-273, arXiv: 1608.07788. Google Scholar

[23]

B. Jovanović, Invariant measures of modified LR and L+R systems, Regular and Chaotic Dynamics, 20 (2015), 542-552, arXiv: 1508.04913. doi: 10.1134/S1560354715050032.  Google Scholar

[24]

Y. Kosmann-Schwarzbach, The Noether Theorems, Invariance and Conservation Laws in the Twentieth Century, Springer, New York, 2011. doi: 10.1007/978-0-387-87868-3.  Google Scholar

[25]

V. V. Kozlov and N. N. Kolesnikov, On theorems of dynamics, (Russian), Prikl. Mat. Mekh., 42 (1978), 28-33.   Google Scholar

[26]

P. Libermann and C. Marle, Symplectic Geometry, Analytical Mechanics, Riedel, Dordrecht, 1987. doi: 10.1007/978-94-009-3807-6.  Google Scholar

[27]

C.-M. Marle, On symmetries and constants of motion in Hamiltonian systems with nonholonomic constraints, In Classical and Quantum Integrability (Warsaw, 2001), 223-242, Banach Center Publ. 59, Polish Acad. Sci. Warsaw, 2003. doi: 10.4064/bc59-0-12.  Google Scholar

[28]

Dj. Mušicki, Noether's theorem for nonconservative systems in quasicoordinates, Theoretical and Applied Mechanics, 43 (2016), 1-17.   Google Scholar

[29]

E. Noether, Invariante variationsprobleme, Nachrichten von der Königlich Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, (1918), 235-257.   Google Scholar

[30]

S. Simić, On Noetherian approach to integrable cases of the motion of heavy top, Bull. Cl. Sci. Math. Nat. Sci. Math., 25 (2000), 133-156.   Google Scholar

show all references

References:
[1]

V. I. Arnold, V. V. Kozlov and A. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Dynamical Systems, Ⅲ. Third Edition. Encyclopaedia Math. Sci. 3. Springer, Berlin, 2006.  Google Scholar

[2]

P. Balseiro and N. Sansonetto, A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries, SIGMA, 12 (2016), Paper No. 018, 14 pages, arXiv: 1510.08314. doi: 10.3842/SIGMA.2016.018.  Google Scholar

[3]

L. BatesH. Graumann and C. MacDonnell, Examples of gauge conservation laws in nonholonomic systems, Rep. Math. Phys., 37 (1996), 295-308.  doi: 10.1016/0034-4877(96)84069-9.  Google Scholar

[4]

A. M. BlochP. S. KrishnaprasadJ. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal., 136 (1996), 21-99.  doi: 10.1007/BF02199365.  Google Scholar

[5]

A. M. BlochJ. E. Marsden and D. V. Zenkov, Quasivelocities and symmetries in nonholonomic systems, Dynamical Systems, 24 (2009), 187-222.  doi: 10.1080/14689360802609344.  Google Scholar

[6]

A. V. Borisov and I. S. Mamaev, Symmetries and reduction in nonholonomic mechanics, Regular and Chaotic Dynamics, 20 (2015), 553–604 doi: 10.1134/S1560354715050044.  Google Scholar

[7]

A. V. BorisovI. S. Mamaev and I. A. Bizyaev, The jacobi integral in nonholonomic mechanics, Regular and Chaotic Dynamics, 20 (2015), 383-400.  doi: 10.1134/S1560354715030107.  Google Scholar

[8]

F. Cantrjin and W. Sarlet, Generalizations of Noether's theorem in classical mechanics, SIAM Review, 23 (1981), 467-494.  doi: 10.1137/1023098.  Google Scholar

[9]

F. CantrjnM. de LeonM. de Diego and J. Marrero, Reduction of nonholonomic mechanical systems with symmetries, Rep. Math. Phys, 42 (1998), 25-45.  doi: 10.1016/S0034-4877(98)80003-7.  Google Scholar

[10]

M. Crampin, Constants of the motion in Lagrangian mechanics, Int. J. Theor. Phys., 16 (1977), 741-754.  doi: 10.1007/BF01807231.  Google Scholar

[11]

M. Crampin and T. Mestdag, The Cartan form for constrained Lagrangian systems and the nonholonomic Noether theorem, Int. J. Geom. Methods. Mod. Phys., 8 (2011), 897-923, arXiv: 1101.3153. doi: 10.1142/S0219887811005452.  Google Scholar

[12]

Dj. S. Djukić, Conservation laws in classical mechanics for quasi-coordinates, Arch. Ration. Mech. Anal., 56 (1974), 79-98.  doi: 10.1007/BF00279822.  Google Scholar

[13]

Dj. S. Djukić and B. D. Vujanović, Noether's theory in the classical nonconservative mechanics, Acta Mech., 23 (1975), 17-27.  doi: 10.1007/BF01177666.  Google Scholar

[14]

F. FassòA. Ramos and N. Sansonetto, The reaction-annihilator distribution and the nonholonomic Noether theorem for lifted actions, Regul. Chaotic Dyn., 12 (2007), 579-588.  doi: 10.1134/S1560354707060019.  Google Scholar

[15]

F. FassòA. Giacobbe and N. Sansonetto, Gauge conservation laws and the momentum equation in nonholonomic mechanics, Reports in Mathematical Physics, 62 (2008), 345-367.  doi: 10.1016/S0034-4877(09)00005-6.  Google Scholar

[16]

F. Fassò and N. Sansonetto, Conservation of energy and momenta in nonholonomic systems with affine constraints, Regular and Chaotic Dynamics, 20 (2015), 449-462, arXiv: 1505.01172. doi: 10.1134/S1560354715040048.  Google Scholar

[17]

F. Fassò and N. Sansonetto, Conservation of 'moving' energy in nonholonomic systems with affine constraints and integrability of spheres on rotating surfaces, J. Nonlinear Sci., 26 (2016), 519-544, arXiv: 1503.06661. doi: 10.1007/s00332-015-9283-4.  Google Scholar

[18]

E. Fiorani and A. Spiro, Lie algebras of conservation laws of variational ordinary differential equations, J. Geom. Phys., 88 (2015), 56-75, arXiv: 1411.6097. doi: 10.1016/j.geomphys.2014.11.005.  Google Scholar

[19]

G. Giachetta, First integrals of non-holonomic systems and their generators, J. Phys. A: Math. Gen., 33 (2000), 5369-5389.  doi: 10.1088/0305-4470/33/30/308.  Google Scholar

[20]

S. Hochgerner and L. C. Garcia-Naranjo, G-Chaplygin systems with internal symmetries, truncation, and an (almost) symplectic view of Chaplygin's ball, J. Geom. Mech., 1 (2009), 35-53, arXiv: 0810.5454. doi: 10.3934/jgm.2009.1.35.  Google Scholar

[21]

B. Jovanović, Hamiltonization and integrability of the Chaplygin sphere in Rn, J. Nonlinear. Sci., 20 (2010), 569-593, arXiv: 0902.4397. doi: 10.1007/s00332-010-9067-9.  Google Scholar

[22]

B. Jovanović, Noether symmetries and integrability in Hamiltonian time-dependent mechanics, Theoretical and Applied Mechanics, 43 (2016), 255-273, arXiv: 1608.07788. Google Scholar

[23]

B. Jovanović, Invariant measures of modified LR and L+R systems, Regular and Chaotic Dynamics, 20 (2015), 542-552, arXiv: 1508.04913. doi: 10.1134/S1560354715050032.  Google Scholar

[24]

Y. Kosmann-Schwarzbach, The Noether Theorems, Invariance and Conservation Laws in the Twentieth Century, Springer, New York, 2011. doi: 10.1007/978-0-387-87868-3.  Google Scholar

[25]

V. V. Kozlov and N. N. Kolesnikov, On theorems of dynamics, (Russian), Prikl. Mat. Mekh., 42 (1978), 28-33.   Google Scholar

[26]

P. Libermann and C. Marle, Symplectic Geometry, Analytical Mechanics, Riedel, Dordrecht, 1987. doi: 10.1007/978-94-009-3807-6.  Google Scholar

[27]

C.-M. Marle, On symmetries and constants of motion in Hamiltonian systems with nonholonomic constraints, In Classical and Quantum Integrability (Warsaw, 2001), 223-242, Banach Center Publ. 59, Polish Acad. Sci. Warsaw, 2003. doi: 10.4064/bc59-0-12.  Google Scholar

[28]

Dj. Mušicki, Noether's theorem for nonconservative systems in quasicoordinates, Theoretical and Applied Mechanics, 43 (2016), 1-17.   Google Scholar

[29]

E. Noether, Invariante variationsprobleme, Nachrichten von der Königlich Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, (1918), 235-257.   Google Scholar

[30]

S. Simić, On Noetherian approach to integrable cases of the motion of heavy top, Bull. Cl. Sci. Math. Nat. Sci. Math., 25 (2000), 133-156.   Google Scholar

[1]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[2]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[3]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[4]

Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021002

[5]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[6]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[7]

Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020375

[8]

Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233

[9]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[10]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[11]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[12]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[13]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[14]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020394

[15]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[16]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[17]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[18]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[19]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[20]

Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (122)
  • HTML views (189)
  • Cited by (3)

Other articles
by authors

[Back to Top]