\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Double groupoids and the symplectic category

Abstract Full Text(HTML) Related Papers Cited by
  • We introduce the notion of a symplectic hopfoid, a "groupoid-like" object in the category of symplectic manifolds whose morphisms are given by canonical relations. Such groupoid-like objects arise when applying a version of the cotangent functor to the structure maps of a Lie groupoid. We show that such objects are in one-to-one correspondence with symplectic double groupoids, generalizing a result of Zakrzewski concerning symplectic double groups and Hopf algebra objects in the aforementioned category. The proof relies on a new realization of the core of a symplectic double groupoid as a symplectic quotient of the total space. The resulting constructions apply more generally to give a correspondence between double Lie groupoids and groupoid-like objects in the category of smooth manifolds and smooth relations, and we show that the cotangent functor relates the two constructions.

    Mathematics Subject Classification: Primary: 53D12; Secondary: 22A22.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   R. Brown  and  K. C. H. Mackenzie , Determination of a double Lie groupoid by its core diagram, J. Pure Appl. Algebra, 80 (1992) , 237-272.  doi: 10.1016/0022-4049(92)90145-6.
      A. Cattaneo  and  I. Contreras , Relational symplectic groupoids, Letters in Mathematical Physics, 105 (2015) , 723-767.  doi: 10.1007/s11005-015-0760-3.
      A. Cattaneo , B. Dherin  and  A. Weinstein , Symplectic microgeometry I: Micromorphisms, Journal of Symplectic Geometry, 8 (2010) , 205-223. 
      A. Coste , P. Dazord  and  A. Weinstein , Groupoïdes symplectiques, Publications du Départment de mathématiques, Nouvelle Série. A, 2 (1987) , 1-62. 
      R. Hepworth , Vector fields and flows on differential stacks, Theory and Applications of Categories, 22 (2009) , 542-587. 
      D. Li-Bland and A. Weinstein, Selective categories and linear canonical relations, SIGMA, 10 (2014), Paper 100, 31 pp. doi: 10.3842/SIGMA.2014.100.
      K. C. H. Mackenzie , On symplectic double groupoids and the duality of Poisson groupoids, International Journal of Mathematics, 10 (1999) , 435-456.  doi: 10.1142/S0129167X99000185.
      R. A. Mehta  and  X. Tang , From double Lie groupoids to local Lie 2-groupoids, Bulletin of the Brazilian Mathematical Society, 42 (2011) , 651-681.  doi: 10.1007/s00574-011-0033-4.
      I. Szymczak  and  S. Zakrzewski , Quantum deformations of the Heisenberg group obtained by geometric quantization, Journal of Geometry and Physics, 7 (1990) , 553-569.  doi: 10.1016/0393-0440(90)90006-O.
      A. Weinstein , The volume of a differentiable stack, Lett Math Phys, 90 (2009) , 353-371.  doi: 10.1007/s11005-009-0343-2.
      A. Weinstein , Coisotropic calculus and Poisson groupoids, Journal of the Mathematical Society of Japan, 40 (1988) , 705-727.  doi: 10.2969/jmsj/04040705.
      A. Weinstein , A note on the Wehrheim-Woodward category, Journal of Geometric Mechanics, 3 (2011) , 507-515.  doi: 10.3934/jgm.2011.3.507.
      A. Weinstein, The symplectic category, Differential Geometric Methods in Mathematical Physics, Lecture Notes in Mathematics, 905 (1982), Springer, Berlin-New York, 45–51.
      S. Zakrzewski , Quantum and classical pseudogroups. Ⅰ. Union pseudogroups and their quantization, Comm. Math. Phys., 134 (1990) , 347-370. 
      S. Zakrzewski , Quantum and Classical Pseudogroups. Ⅱ. Differential and symplectic pseudogroups, Comm. Math. Phys., 134 (1990) , 371-395. 
  • 加载中
SHARE

Article Metrics

HTML views(288) PDF downloads(241) Cited by(0)

Access History

Other Articles By Authors

  • on this site
  • on Google Scholar

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return