Advanced Search
Article Contents
Article Contents

On the geometry of the Schmidt-Legendre transformation

  • * Corresponding author

    * Corresponding author 
Abstract Full Text(HTML) Related Papers Cited by
  • Tulczyjew's triples are constructed for the Schmidt-Legendre transformations of both second and third-order Lagrangians. Symplectic diffeomorphisms relating the Ostrogradsky-Legendre and the Schmidt-Legendre transformations are derived. Several examples are presented.

    Mathematics Subject Classification: Primary: 70H50; Secondary: 70H45.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   R. Abraham and J. E. Marsden, Foundations of Mechanics, Reading, Massachusetts, Benjamin/Cummings Publishing Company, 1978.
      L. Abrunheiro and L. Colombo, Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroids, Mediterranean Journal of Mathematics, 15 (2018), Art. 57, 19 pp. doi: 10.1007/s00009-018-1108-x.
      K. Andrzejewski, J. Gonera, P. Machalski and P. Maś lanka, Modified Hamiltonian formalism for higher-derivative theories, Physical Review D, 82 (2010), 045008. doi: 10.1103/PhysRevD.82.045008.
      V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Vol. 60, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.
      C. Batlle , J. Gomis , J. M. Pons  and  N. Roman-Roy , Equivalence between the Lagrangian and Hamiltonian formalism for constrained systems, Journal of Mathematical Physics, 27 (1986) , 2953-2962.  doi: 10.1063/1.527274.
      C. Batlle , J. Gomis , J. M. Pons  and  N. Roman-Roy , Lagrangian and Hamiltonian constraints for second-order singular Lagrangians, Journal of Physics A: Mathematical and General, 21 (1988) , 2693-2703.  doi: 10.1088/0305-4470/21/12/013.
      S. Benenti, Hamiltonian Structures and Generating Families, Springer Science & Business Media, 2011. doi: 10.1007/978-1-4614-1499-5.
      A. M. Bloch  and  P. E. Crouch , On the equivalence of higher order variational problems and optimal control problems. In Decision and Control, 1996., Proceedings of the 35th IEEE Conference on, IEEE, 2 (1996) , 1648-1653. 
      K. Bolonek  and  P. Kosinski , Hamiltonian structures for pais-uhlenbeck oscillator, Acta Physica Polonica B, 36 (2205) , 2115. 
      A. J. Bruce, K. Grabowska and J. Grabowski, Higher order mechanics on graded bundles, Journal of Physics A: Mathematical and Theoretical, 48 (2015), 205203, 32pp. doi: 10.1088/1751-8113/48/20/205203.
      F. Çağatay Uçgun, O. Esen and H. Gümral, Reductions of topologically massive gravity Ⅰ: Hamiltonian analysis of second order degenerate Lagrangians, Journal of Mathematical Physics, 59 (2018), 013510, 16pp. doi: 10.1063/1.5021948.
      C. M. Campos, M. de León, D. M. de Diego and J. Vankerschaver, Unambiguous formalism for higher order Lagrangian field theories, Journal of Physics A: Mathematical and Theoretical, 42 (2009), 475207, 24pp. doi: 10.1088/1751-8113/42/47/475207.
      F. Cardin , Morse families and constrained mechanical systems, Generalized hyperelastic materials. Meccanica, 26 (1991) , 161-167. 
      H. Cendra and S. D. Grillo, Lagrangian systems with higher order constraints, Journal of Mathematical Physics, 48 (2007), 052904, 35pp. doi: 10.1063/1.2740470.
      T. J. Chen, M. Fasiello, E. A. Lim and A. J. Tolley, Higher derivative theories with constraints: Exorcising Ostrogradski's ghost, Journal of Cosmology and Astroparticle Physics, 2 (2013), 042, front matter+17 pp.
      G. Clément , Particle-like solutions to topologically massive gravity, Classical and Quantum Gravity, 11 (1994) , L115-L120. 
      L. Colombo , Second-order constrained variational problems on Lie algebroids: Applications to optimal control, Journal of Geometric Mechanics, 9 (2017) , 1-45.  doi: 10.3934/jgm.2017001.
      L. Colombo , M. de León , P. D. Prieto-Martínez  and  N. Román-Roy , Unified formalism for the generalized kth-order Hamilton-Jacobi problem, International Journal of Geometric Methods in Modern Physics, 11 (2014) , 1460037, 9pp.  doi: 10.1142/S0219887814600378.
      L. Colombo  and  D. M. de Diego , Higher-order variational problems on Lie groups and optimal control applications, Journal Geometric Mechanics, 6 (2014) , 451-478.  doi: 10.3934/jgm.2014.6.451.
      L. Colombo and P. D. Prieto-Martínez, Regularity properties of fiber derivatives associated with higher-order mechanical systems, Journal of Mathematical Physics, 57 (2016), 082901, 25pp. doi: 10.1063/1.4960822.
      M. Crampin, W. Sarlet and F. Cantrijn, Higher-order differential equations and higher-order Lagrangian mechanics. In Mathematical Proceedings of the Cambridge Philosophical Society, 99 (1986), 565–587. doi: 10.1017/S0305004100064501.
      A. Deriglazov, Classical Mechanics, Springer International Publishing, 2017. doi: 10.1007/978-3-319-44147-4.
      N. Deruelle, Y. Sendouda and A. Youssef, Various Hamiltonian formulations of f (R) gravity and their canonical relationships, Physical Review D, 80 (2009), 084032, 11pp. doi: 10.1103/PhysRevD.80.084032.
      S. Deser , R. Jackiw  and  S. Templeton , Topologically massive gauge theories, Annals of Physics, 140 (1982) , 372-411.  doi: 10.1016/0003-4916(82)90164-6.
      S. Deser , R. Jackiw  and  S. Templeton , Three-dimensional massive gauge theories, Physical Review Letters, 48 (1982) , 975-978.  doi: 10.1103/PhysRevLett.48.975.
      P. A. M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science, Monograph Series, Yeshiva University, New York, 1967.
      P. A. M. Dirac , Generalized hamiltonian dynamics, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 246 (1958) , 326-332.  doi: 10.1098/rspa.1958.0141.
      C. T. J. Dodson  and  M. S. Radivoiovici , Tangent and frame bundles of order two, An. Stiint. Univ. "Al. I. Cuza" Iasi Sect. I a Mat. (N.S.), 28 (1982) , 63-71. 
      C. T. Dodson, G. Galanis and E. Vassiliou, Geometry in a Fréchet Context: A Projective Limit Approach, Cambridge University Press, 2016. doi: 10.1017/CBO9781316556092.
      O. Esen  and  H. Gümral , Tulczyjew's triplet for Lie groups Ⅰ: Trivializations and reductions, Journal of Lie Theory, 24 (2014) , 1115-1160. 
      O. Esen  and  H. Gümral , Tulczyjew's triplet for Lie groups. Ⅱ: Dynamics, Journal of Lie Theory, 27 (2017) , 329-356. 
      F. Gay-Balmaz , D. D. Holm , D. M. Meier , T. S. Ratiu  and  F.-X. Vialard , Invariant higher-order variational problems, Communications in Mathematical Physics, 309 (2012) , 413-458.  doi: 10.1007/s00220-011-1313-y.
      F. Gay-Balmaz , D. D. Holm  and  T. S. Ratiu , Higher order Lagrange-Poincaré and Hamilton-Poincaré reductions, Bulletin of the Brazilian Mathematical Society, 42 (2011) , 579-606.  doi: 10.1007/s00574-011-0030-7.
      M. J. Gotay  and  J. M. Nester , Presymplectic Lagrangian systems. Ⅰ: The constraint algorithm and the equivalence theorem, Ann. Inst. H. Poincaré Sect. A (N.S.), 30 (1979) , 129-142. 
      M. J. Gotay and J. M. Nester, Generalized constraint algorithm and special presymplectic manifolds, Geometric Methods in Mathematical Physics (Proc. NSF-CBMS Conf., Univ. Lowell, Lowell, Mass., 1979), Lecture Notes in Math., 775, Springer, Berlin, (1980), 78–104.
      M. J. Gotay  and  J. M. Nester , Apartheid in the Dirac theory of constraints, Journal of Physics A: Mathematical and General, 17 (1984) , 3063-3066.  doi: 10.1088/0305-4470/17/15/023.
      M. J. Gotay , J. M. Nester  and  G. Hinds , Presymplectic manifolds and the Dirac Bergmann theory of constraints, Journal of Mathematical Physics, 19 (1978) , 2388-2399.  doi: 10.1063/1.523597.
      K. Grabowska  and  L. Vitagliano , Tulczyjew triples in higher derivative field theory, Journal of Geometric Mechanics, 7 (2015) , 1-33.  doi: 10.3934/jgm.2015.7.1.
      K. Grabowska  and  M. Zajac , The Tulczyjew triple in mechanics on a Lie group, Journal of Geometric Mechanics, 8 (2016) , 413-435.  doi: 10.3934/jgm.2016014.
      J. Grabowski , K. Grabowska  and  P. Urbański , Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings, Journal of Geometric Mechanics, 6 (2014) , 503-526.  doi: 10.3934/jgm.2014.6.503.
      X. Grácia , J. M. Pons  and  N. Román-Roy , Higher-order Lagrangian systems: Geometric structures, dynamics, and constraints, Journal of mathematical physics, 32 (1991) , 2744-2763.  doi: 10.1063/1.529066.
      S. W. Hawking and T. Hertog, Living with ghosts, Physical Review D, 65 (2002), 103515, 8pp. doi: 10.1103/PhysRevD.65.103515.
      M. Jóźwikowski  and  M. Rotkiewicz , Models for higher algebroids, Journal of Geometric Mechanics, 7 (2015) , 317-359.  doi: 10.3934/jgm.2015.7.317.
      M. Jóźwikowski, Prolongations vs. Tulczyjew triples in Geometric Mechanics, arXiv preprint, arXiv: 1712.09858, (2017).
      U. Kasper , Finding the Hamiltonian for cosmological models in fourth-order gravity theories without resorting to the Ostrogradski or Dirac formalism, General Relativity and Gravitation, 29 (1997) , 221-233.  doi: 10.1023/A:1010292128733.
      B. Lawruk , J. Śniatycki  and  W. M. Tulczyjew , Special symplectic spaces, Journal of Differential Equations, 17 (1975) , 477-497.  doi: 10.1016/0022-0396(75)90057-1.
      M. de León  and  D. M. de Diego , Symmetries and constants of the motion for higher order Lagrangian systems, Journal of Mathematical Physics, 36 (1995) , 4138-4161.  doi: 10.1063/1.530952.
      M. de León  and  E. A. Lacomba , Lagrangian submanifolds and higher-order mechanical systems, Journal of Physics A: Mathematical and General, 22 (1989) , 3809-3820.  doi: 10.1088/0305-4470/22/18/019.
      M. de León , J. C. Marrero  and  E. Martínez , Lagrangian submanifolds and dynamics on Lie algebroids, Journal of Physics A: Mathematical and General, 38 (2005) , R241-R308.  doi: 10.1088/0305-4470/38/24/R01.
      M. de León and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory: A Geometrical Approach of Lagrangian and Hamiltonian Formalisms Involving Higher Order Derivatives, North-Holland Publishing Co., Amsterdam, 1985. doi: 10.1088/0266-5611/8/4/006.
      P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics, D. Reidel Publishing Co., Dordrecht, 1987. doi: 10.1007/978-94-009-3807-6.
      P. D. Mannheim and A. Davidson, Dirac quantization of the Pais-Uhlenbeck fourth order oscillator, Physical Review A, 71 (2005), 042110, 9pp. doi: 10.1103/PhysRevA.71.042110.
      J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Second edition. Texts in Applied Mathematics, 17 Springer-Verlag, New York, 1999. doi: 10.1007/978-0-387-21792-5.
      E. Martínez , Higher-order variational calculus on Lie algebroids, Journal of Geometric Mechanics, 7 (2015) , 81-108.  doi: 10.3934/jgm.2015.7.81.
      I. Masterov , An alternative Hamiltonian formulation for the Pais-Uhlenbeck oscillator, Nuclear Physics B, 902 (2016) , 95-114.  doi: 10.1016/j.nuclphysb.2015.11.011.
      I. Masterov , The odd-order Pais-Uhlenbeck oscillator, Nuclear Physics B, 907 (2016) , 495-508.  doi: 10.1016/j.nuclphysb.2016.04.025.
      R. Miron, The Geometry of Higher-Order Lagrange Spaces: Applications to Mechanics and Physics, Kluwer Academic Publishers Group, Dordrecht, 1997. doi: 10.1007/978-94-017-3338-0.
      A. Mostafazadeh , A Hamiltonian formulation of the Pais-Uhlenbeck oscillator that yields a stable and unitary quantum system, Physics Letters A, 375 (2010) , 93-98.  doi: 10.1016/j.physleta.2010.10.050.
      M. Nakahara, Geometry, Topology and Physics, Institute of Physics, Bristol, 2003. doi: 10.1201/9781420056945.
      N. V. Nesterenko , Singular Lagrangians with higher derivatives, Journal of Physics A: Mathematical and General, 22 (1989) , 1673-1687.  doi: 10.1088/0305-4470/22/10/021.
      M. Ostrogradsky, Mem. Ac. St. Petersbourg. Mem. Ac. St. Petersbourg, 14, (19850) 385.
      A. Pais  and  G. E. Uhlenbeck , On field theories with non-localized action, Physical Review, 79 (1950) , 145-165.  doi: 10.1103/PhysRev.79.145.
      P. D. Prieto-Martínez and N. Román-Roy, Lagrangian Hamiltonian unified formalism for autonomous higher order dynamical systems, Journal of Physics A: Mathematical and Theoretical, 44 (2011), 385203, 35pp. doi: 10.1088/1751-8113/44/38/385203.
      J. M. Pons , Ostrogradski's theorem for higher-order singular Lagrangians, Lett. Math. Phys., 17 (1989) , 181-189.  doi: 10.1007/BF00401583.
      M. S. Rashid  and  S. S. Khalil , Hamiltonian description of higher order Lagrangians, International Journal of Modern Physics A, 11 (1996) , 4551-4559.  doi: 10.1142/S0217751X96002108.
      H. J. Schmidt , Stability and Hamiltonian formulation of higher derivative theories, Physical Review D, 49 (1994) , 6354-6366.  doi: 10.1103/PhysRevD.49.6354.
      H. J. Schmidt, An alternate Hamiltonian formulation of fourth-order theories and its application to cosmology, arXiv preprint, arXiv: 9501019.
      Ö Sarıoğlu  and  B. Tekin , Topologically massive gravity as a Pais-Uhlenbeck oscillator, Classical and Quantum Gravity, 23 (2006) , 7541-7549.  doi: 10.1088/0264-9381/23/24/023.
      R. Skinner , First order equations of motion for classical mechanics, Journal of Mathematical Physics, 24 (1983) , 2581-2588.  doi: 10.1063/1.525653.
      R. Skinner  and  R. Rusk , Generalized Hamiltonian dynamics. Ⅰ. Formulation on ${T^*}Q{\rm{ }} \oplus TQ$, Journal of Mathematical Physics, 24 (1983) , 2589-2594.  doi: 10.1063/1.525654.
      R. Skinner  and  R. Rusk , Generalized Hamiltonian dynamics. Ⅱ. Gauge transformations, Journal of Mathematical Physics, 24 (1983) , 2595-2601.  doi: 10.1063/1.525655.
      J. Śniatycki  and  W. M. Tulczyjew , Generating forms of Lagrangian submanifolds, Indiana Univ. Math. J., 22 (1972/73) , 267-275.  doi: 10.1512/iumj.1973.22.22021.
      A. Suri , Geometry of the double tangent bundles of Banach manifolds, Journal of Geometry and Physics, 74 (2013) , 91-100.  doi: 10.1016/j.geomphys.2013.07.009.
      A. Suri, Higher order tangent bundles, Mediterr. J. Math. , 14 (2017), Art. 5, 17pp. doi: 10.1007/s00009-016-0812-7.
      W. M. Tulczyjew , A symplectic formulation of relativistic particle dynamics, Acta Physica Polonica B, 8 (1977) , 431-447. 
      W. M. Tulczyjew , The Legendre transformation, Ann. Inst. Henri Poincaré Sec. A: Phys. Théor., 27 (1977) , 101-114. 
      W. M. Tulczyjew, A symplectic formulation of particle dynamics, Differential Geometric Methods in Mathematical Physics, Lect. Notes in Math., 570 (1977), 457–463.
      W. M. Tulczyjew  and  P. Urbanski , A slow and careful legendre transformation for singular lagrangians, Acta Physica Polonica. Series B, 30 (1999) , 2909-2978. 
      A. Weinstein , Symplectic manifolds and their Lagrangian submanifolds, Advan. in Math., 6 (1971) , 329-346.  doi: 10.1016/0001-8708(71)90020-X.
      A. Weinstein, Lectures on Symplectic Manifolds, Exp. lec. from the CBMS, Regional Conference Series in Mathematics, 29 A. M. S., Providence, 1977.
  • 加载中

Article Metrics

HTML views(669) PDF downloads(388) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint