Tulczyjew's triples are constructed for the Schmidt-Legendre transformations of both second and third-order Lagrangians. Symplectic diffeomorphisms relating the Ostrogradsky-Legendre and the Schmidt-Legendre transformations are derived. Several examples are presented.
Citation: |
R. Abraham and J. E. Marsden,
Foundations of Mechanics, Reading, Massachusetts, Benjamin/Cummings Publishing Company, 1978.
![]() ![]() |
|
L. Abrunheiro and L. Colombo, Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroids,
Mediterranean Journal of Mathematics, 15 (2018), Art. 57, 19 pp.
doi: 10.1007/s00009-018-1108-x.![]() ![]() ![]() |
|
K. Andrzejewski, J. Gonera, P. Machalski and P. Maś lanka, Modified Hamiltonian formalism for higher-derivative theories,
Physical Review D, 82 (2010), 045008.
doi: 10.1103/PhysRevD.82.045008.![]() ![]() |
|
V. I. Arnol'd,
Mathematical Methods of Classical Mechanics, Vol. 60, Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4757-2063-1.![]() ![]() ![]() |
|
C. Batlle
, J. Gomis
, J. M. Pons
and N. Roman-Roy
, Equivalence between the Lagrangian and Hamiltonian formalism for constrained systems, Journal of Mathematical Physics, 27 (1986)
, 2953-2962.
doi: 10.1063/1.527274.![]() ![]() ![]() |
|
C. Batlle
, J. Gomis
, J. M. Pons
and N. Roman-Roy
, Lagrangian and Hamiltonian constraints for second-order singular Lagrangians, Journal of Physics A: Mathematical and General, 21 (1988)
, 2693-2703.
doi: 10.1088/0305-4470/21/12/013.![]() ![]() ![]() |
|
S. Benenti,
Hamiltonian Structures and Generating Families, Springer Science & Business Media, 2011.
doi: 10.1007/978-1-4614-1499-5.![]() ![]() ![]() |
|
A. M. Bloch
and P. E. Crouch
, On the equivalence of higher order variational problems and optimal control problems. In Decision and Control, 1996., Proceedings of the 35th IEEE Conference on, IEEE, 2 (1996)
, 1648-1653.
![]() |
|
K. Bolonek
and P. Kosinski
, Hamiltonian structures for pais-uhlenbeck oscillator, Acta Physica Polonica B, 36 (2205)
, 2115.
![]() |
|
A. J. Bruce, K. Grabowska and J. Grabowski, Higher order mechanics on graded bundles,
Journal of Physics A: Mathematical and Theoretical, 48 (2015), 205203, 32pp.
doi: 10.1088/1751-8113/48/20/205203.![]() ![]() ![]() |
|
F. Çağatay Uçgun, O. Esen and H. Gümral, Reductions of topologically massive gravity Ⅰ: Hamiltonian analysis of second order degenerate Lagrangians,
Journal of Mathematical Physics, 59 (2018), 013510, 16pp.
doi: 10.1063/1.5021948.![]() ![]() ![]() |
|
C. M. Campos, M. de León, D. M. de Diego and J. Vankerschaver, Unambiguous formalism for higher order Lagrangian field theories,
Journal of Physics A: Mathematical and Theoretical, 42 (2009), 475207, 24pp.
doi: 10.1088/1751-8113/42/47/475207.![]() ![]() ![]() |
|
F. Cardin
, Morse families and constrained mechanical systems, Generalized hyperelastic materials. Meccanica, 26 (1991)
, 161-167.
![]() |
|
H. Cendra and S. D. Grillo, Lagrangian systems with higher order constraints,
Journal of Mathematical Physics, 48 (2007), 052904, 35pp.
doi: 10.1063/1.2740470.![]() ![]() ![]() |
|
T. J. Chen, M. Fasiello, E. A. Lim and A. J. Tolley, Higher derivative theories with constraints: Exorcising Ostrogradski's ghost,
Journal of Cosmology and Astroparticle Physics, 2 (2013), 042, front matter+17 pp.
![]() ![]() |
|
G. Clément
, Particle-like solutions to topologically massive gravity, Classical and Quantum Gravity, 11 (1994)
, L115-L120.
![]() ![]() |
|
L. Colombo
, Second-order constrained variational problems on Lie algebroids: Applications to optimal control, Journal of Geometric Mechanics, 9 (2017)
, 1-45.
doi: 10.3934/jgm.2017001.![]() ![]() ![]() |
|
L. Colombo
, M. de León
, P. D. Prieto-Martínez
and N. Román-Roy
, Unified formalism for the generalized kth-order Hamilton-Jacobi problem, International Journal of Geometric Methods
in Modern Physics, 11 (2014)
, 1460037, 9pp.
doi: 10.1142/S0219887814600378.![]() ![]() ![]() |
|
L. Colombo
and D. M. de Diego
, Higher-order variational problems on Lie groups and optimal control applications, Journal Geometric Mechanics, 6 (2014)
, 451-478.
doi: 10.3934/jgm.2014.6.451.![]() ![]() ![]() |
|
L. Colombo and P. D. Prieto-Martínez, Regularity properties of fiber derivatives associated with higher-order mechanical systems,
Journal of Mathematical Physics, 57 (2016), 082901, 25pp.
doi: 10.1063/1.4960822.![]() ![]() ![]() |
|
M. Crampin, W. Sarlet and F. Cantrijn, Higher-order differential equations and higher-order
Lagrangian mechanics. In Mathematical Proceedings of the Cambridge Philosophical Society,
99 (1986), 565–587.
doi: 10.1017/S0305004100064501.![]() ![]() ![]() |
|
A. Deriglazov,
Classical Mechanics, Springer International Publishing, 2017.
doi: 10.1007/978-3-319-44147-4.![]() ![]() ![]() |
|
N. Deruelle, Y. Sendouda and A. Youssef, Various Hamiltonian formulations of f (R) gravity and their canonical relationships,
Physical Review D, 80 (2009), 084032, 11pp.
doi: 10.1103/PhysRevD.80.084032.![]() ![]() ![]() |
|
S. Deser
, R. Jackiw
and S. Templeton
, Topologically massive gauge theories, Annals of Physics, 140 (1982)
, 372-411.
doi: 10.1016/0003-4916(82)90164-6.![]() ![]() ![]() |
|
S. Deser
, R. Jackiw
and S. Templeton
, Three-dimensional massive gauge theories, Physical Review Letters, 48 (1982)
, 975-978.
doi: 10.1103/PhysRevLett.48.975.![]() ![]() |
|
P. A. M. Dirac,
Lectures on Quantum Mechanics, Belfer Graduate School of Science, Monograph Series, Yeshiva University, New York, 1967.
![]() ![]() |
|
P. A. M. Dirac
, Generalized hamiltonian dynamics, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 246 (1958)
, 326-332.
doi: 10.1098/rspa.1958.0141.![]() ![]() ![]() |
|
C. T. J. Dodson
and M. S. Radivoiovici
, Tangent and frame bundles of order two, An. Stiint. Univ. "Al. I. Cuza" Iasi Sect. I a Mat. (N.S.), 28 (1982)
, 63-71.
![]() ![]() |
|
C. T. Dodson, G. Galanis and E. Vassiliou,
Geometry in a Fréchet Context: A Projective Limit Approach, Cambridge University Press, 2016.
doi: 10.1017/CBO9781316556092.![]() ![]() ![]() |
|
O. Esen
and H. Gümral
, Tulczyjew's triplet for Lie groups Ⅰ: Trivializations and reductions, Journal of Lie Theory, 24 (2014)
, 1115-1160.
![]() ![]() |
|
O. Esen
and H. Gümral
, Tulczyjew's triplet for Lie groups. Ⅱ: Dynamics, Journal of Lie Theory, 27 (2017)
, 329-356.
![]() ![]() |
|
F. Gay-Balmaz
, D. D. Holm
, D. M. Meier
, T. S. Ratiu
and F.-X. Vialard
, Invariant higher-order variational problems, Communications in Mathematical Physics, 309 (2012)
, 413-458.
doi: 10.1007/s00220-011-1313-y.![]() ![]() ![]() |
|
F. Gay-Balmaz
, D. D. Holm
and T. S. Ratiu
, Higher order Lagrange-Poincaré and Hamilton-Poincaré reductions, Bulletin of the Brazilian Mathematical Society, 42 (2011)
, 579-606.
doi: 10.1007/s00574-011-0030-7.![]() ![]() ![]() |
|
M. J. Gotay
and J. M. Nester
, Presymplectic Lagrangian systems. Ⅰ: The constraint algorithm and the equivalence theorem, Ann. Inst. H. Poincaré Sect. A (N.S.), 30 (1979)
, 129-142.
![]() ![]() |
|
M. J. Gotay and J. M. Nester, Generalized constraint algorithm and special presymplectic manifolds, Geometric Methods in Mathematical Physics (Proc. NSF-CBMS Conf., Univ.
Lowell, Lowell, Mass., 1979), Lecture Notes in Math., 775, Springer, Berlin, (1980), 78–104.
![]() ![]() |
|
M. J. Gotay
and J. M. Nester
, Apartheid in the Dirac theory of constraints, Journal of Physics A: Mathematical and General, 17 (1984)
, 3063-3066.
doi: 10.1088/0305-4470/17/15/023.![]() ![]() ![]() |
|
M. J. Gotay
, J. M. Nester
and G. Hinds
, Presymplectic manifolds and the Dirac Bergmann theory of constraints, Journal of Mathematical Physics, 19 (1978)
, 2388-2399.
doi: 10.1063/1.523597.![]() ![]() ![]() |
|
K. Grabowska
and L. Vitagliano
, Tulczyjew triples in higher derivative field theory, Journal of Geometric Mechanics, 7 (2015)
, 1-33.
doi: 10.3934/jgm.2015.7.1.![]() ![]() ![]() |
|
K. Grabowska
and M. Zajac
, The Tulczyjew triple in mechanics on a Lie group, Journal of Geometric Mechanics, 8 (2016)
, 413-435.
doi: 10.3934/jgm.2016014.![]() ![]() ![]() |
|
J. Grabowski
, K. Grabowska
and P. Urbański
, Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings, Journal of Geometric Mechanics, 6 (2014)
, 503-526.
doi: 10.3934/jgm.2014.6.503.![]() ![]() ![]() |
|
X. Grácia
, J. M. Pons
and N. Román-Roy
, Higher-order Lagrangian systems: Geometric structures, dynamics, and constraints, Journal of mathematical physics, 32 (1991)
, 2744-2763.
doi: 10.1063/1.529066.![]() ![]() ![]() |
|
S. W. Hawking and T. Hertog, Living with ghosts, Physical Review D, 65 (2002), 103515, 8pp.
doi: 10.1103/PhysRevD.65.103515.![]() ![]() ![]() |
|
M. Jóźwikowski
and M. Rotkiewicz
, Models for higher algebroids, Journal of Geometric Mechanics, 7 (2015)
, 317-359.
doi: 10.3934/jgm.2015.7.317.![]() ![]() ![]() |
|
M. Jóźwikowski, Prolongations vs. Tulczyjew triples in Geometric Mechanics, arXiv preprint, arXiv: 1712.09858, (2017).
![]() |
|
U. Kasper
, Finding the Hamiltonian for cosmological models in fourth-order gravity theories without resorting to the Ostrogradski or Dirac formalism, General Relativity and Gravitation, 29 (1997)
, 221-233.
doi: 10.1023/A:1010292128733.![]() ![]() ![]() |
|
B. Lawruk
, J. Śniatycki
and W. M. Tulczyjew
, Special symplectic spaces, Journal of Differential Equations, 17 (1975)
, 477-497.
doi: 10.1016/0022-0396(75)90057-1.![]() ![]() ![]() |
|
M. de León
and D. M. de Diego
, Symmetries and constants of the motion for higher order Lagrangian systems, Journal of Mathematical Physics, 36 (1995)
, 4138-4161.
doi: 10.1063/1.530952.![]() ![]() ![]() |
|
M. de León
and E. A. Lacomba
, Lagrangian submanifolds and higher-order mechanical systems, Journal of Physics A: Mathematical and General, 22 (1989)
, 3809-3820.
doi: 10.1088/0305-4470/22/18/019.![]() ![]() ![]() |
|
M. de León
, J. C. Marrero
and E. Martínez
, Lagrangian submanifolds and dynamics on Lie algebroids, Journal of Physics A: Mathematical and General, 38 (2005)
, R241-R308.
doi: 10.1088/0305-4470/38/24/R01.![]() ![]() ![]() |
|
M. de León and P. R. Rodrigues,
Generalized Classical Mechanics and Field Theory: A Geometrical Approach of Lagrangian and Hamiltonian Formalisms Involving Higher Order Derivatives, North-Holland Publishing Co., Amsterdam, 1985.
doi: 10.1088/0266-5611/8/4/006.![]() ![]() ![]() |
|
P. Libermann and C.-M. Marle,
Symplectic Geometry and Analytical Mechanics, D. Reidel Publishing Co., Dordrecht, 1987.
doi: 10.1007/978-94-009-3807-6.![]() ![]() ![]() |
|
P. D. Mannheim and A. Davidson, Dirac quantization of the Pais-Uhlenbeck fourth order oscillator,
Physical Review A, 71 (2005), 042110, 9pp.
doi: 10.1103/PhysRevA.71.042110.![]() ![]() ![]() |
|
J. E. Marsden and T. S. Ratiu,
Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Second edition. Texts in Applied Mathematics, 17 Springer-Verlag, New York, 1999.
doi: 10.1007/978-0-387-21792-5.![]() ![]() ![]() |
|
E. Martínez
, Higher-order variational calculus on Lie algebroids, Journal of Geometric Mechanics, 7 (2015)
, 81-108.
doi: 10.3934/jgm.2015.7.81.![]() ![]() ![]() |
|
I. Masterov
, An alternative Hamiltonian formulation for the Pais-Uhlenbeck oscillator, Nuclear Physics B, 902 (2016)
, 95-114.
doi: 10.1016/j.nuclphysb.2015.11.011.![]() ![]() ![]() |
|
I. Masterov
, The odd-order Pais-Uhlenbeck oscillator, Nuclear Physics B, 907 (2016)
, 495-508.
doi: 10.1016/j.nuclphysb.2016.04.025.![]() ![]() ![]() |
|
R. Miron,
The Geometry of Higher-Order Lagrange Spaces: Applications to Mechanics and Physics, Kluwer Academic Publishers Group, Dordrecht, 1997.
doi: 10.1007/978-94-017-3338-0.![]() ![]() ![]() |
|
A. Mostafazadeh
, A Hamiltonian formulation of the Pais-Uhlenbeck oscillator that yields a stable and unitary quantum system, Physics Letters A, 375 (2010)
, 93-98.
doi: 10.1016/j.physleta.2010.10.050.![]() ![]() ![]() |
|
M. Nakahara,
Geometry, Topology and Physics, Institute of Physics, Bristol, 2003.
doi: 10.1201/9781420056945.![]() ![]() ![]() |
|
N. V. Nesterenko
, Singular Lagrangians with higher derivatives, Journal of Physics A: Mathematical and General, 22 (1989)
, 1673-1687.
doi: 10.1088/0305-4470/22/10/021.![]() ![]() ![]() |
|
M. Ostrogradsky,
Mem. Ac. St. Petersbourg. Mem. Ac. St. Petersbourg, 14, (19850) 385.
![]() |
|
A. Pais
and G. E. Uhlenbeck
, On field theories with non-localized action, Physical Review, 79 (1950)
, 145-165.
doi: 10.1103/PhysRev.79.145.![]() ![]() ![]() |
|
P. D. Prieto-Martínez and N. Román-Roy, Lagrangian Hamiltonian unified formalism for autonomous higher order dynamical systems,
Journal of Physics A: Mathematical and Theoretical, 44 (2011), 385203, 35pp.
doi: 10.1088/1751-8113/44/38/385203.![]() ![]() ![]() |
|
J. M. Pons
, Ostrogradski's theorem for higher-order singular Lagrangians, Lett. Math. Phys., 17 (1989)
, 181-189.
doi: 10.1007/BF00401583.![]() ![]() ![]() |
|
M. S. Rashid
and S. S. Khalil
, Hamiltonian description of higher order Lagrangians, International Journal of Modern Physics A, 11 (1996)
, 4551-4559.
doi: 10.1142/S0217751X96002108.![]() ![]() ![]() |
|
H. J. Schmidt
, Stability and Hamiltonian formulation of higher derivative theories, Physical Review D, 49 (1994)
, 6354-6366.
doi: 10.1103/PhysRevD.49.6354.![]() ![]() ![]() |
|
H. J. Schmidt, An alternate Hamiltonian formulation of fourth-order theories and its application to cosmology, arXiv preprint, arXiv: 9501019.
![]() |
|
Ö Sarıoğlu
and B. Tekin
, Topologically massive gravity as a Pais-Uhlenbeck oscillator, Classical and Quantum Gravity, 23 (2006)
, 7541-7549.
doi: 10.1088/0264-9381/23/24/023.![]() ![]() ![]() |
|
R. Skinner
, First order equations of motion for classical mechanics, Journal of Mathematical Physics, 24 (1983)
, 2581-2588.
doi: 10.1063/1.525653.![]() ![]() ![]() |
|
R. Skinner
and R. Rusk
, Generalized Hamiltonian dynamics. Ⅰ. Formulation on ${T^*}Q{\rm{ }} \oplus TQ$, Journal of Mathematical Physics, 24 (1983)
, 2589-2594.
doi: 10.1063/1.525654.![]() ![]() ![]() |
|
R. Skinner
and R. Rusk
, Generalized Hamiltonian dynamics. Ⅱ. Gauge transformations, Journal of Mathematical Physics, 24 (1983)
, 2595-2601.
doi: 10.1063/1.525655.![]() ![]() ![]() |
|
J. Śniatycki
and W. M. Tulczyjew
, Generating forms of Lagrangian submanifolds, Indiana
Univ. Math. J., 22 (1972/73)
, 267-275.
doi: 10.1512/iumj.1973.22.22021.![]() ![]() ![]() |
|
A. Suri
, Geometry of the double tangent bundles of Banach manifolds, Journal of Geometry and Physics, 74 (2013)
, 91-100.
doi: 10.1016/j.geomphys.2013.07.009.![]() ![]() ![]() |
|
A. Suri, Higher order tangent bundles,
Mediterr. J. Math. , 14 (2017), Art. 5, 17pp.
doi: 10.1007/s00009-016-0812-7.![]() ![]() ![]() |
|
W. M. Tulczyjew
, A symplectic formulation of relativistic particle dynamics, Acta Physica Polonica B, 8 (1977)
, 431-447.
![]() ![]() |
|
W. M. Tulczyjew
, The Legendre transformation, Ann. Inst. Henri Poincaré Sec. A: Phys. Théor., 27 (1977)
, 101-114.
![]() ![]() |
|
W. M. Tulczyjew, A symplectic formulation of particle dynamics, Differential Geometric
Methods in Mathematical Physics, Lect. Notes in Math., 570 (1977), 457–463.
![]() ![]() |
|
W. M. Tulczyjew
and P. Urbanski
, A slow and careful legendre transformation for singular lagrangians, Acta Physica Polonica. Series B, 30 (1999)
, 2909-2978.
![]() ![]() |
|
A. Weinstein
, Symplectic manifolds and their Lagrangian submanifolds, Advan. in Math., 6 (1971)
, 329-346.
doi: 10.1016/0001-8708(71)90020-X.![]() ![]() ![]() |
|
A. Weinstein,
Lectures on Symplectic Manifolds, Exp. lec. from the CBMS, Regional Conference Series in Mathematics, 29 A. M. S., Providence, 1977.
![]() ![]() |