June  2019, 11(2): 139-151. doi: 10.3934/jgm.2019007

Particle relabelling symmetries and Noether's theorem for vertical slice models

1. 

Department of Mathematics, Imperial College London, London, SW7 2AZ, UK

2. 

Met Office, FitzRoy Road, Exeter, Devon, EX1 3PB, UK

* Corresponding author: C. J. Cotter

CJC is supported by NERC grant NE/K012533/1.
Michael John Priestley Cullen's contribution is Crown Copyright.

Received  December 2017 Revised  July 2018 Published  May 2019

Fund Project: This paper entilted "Particle relabelling symmetries and Noether's theorem for vertical slice models" is licensed under a Creative Commons Attribution 3.0 Unported License. See http://creativecommons.org/licenses/by/3.0/.

We consider the variational formulation for vertical slice models introduced in Cotter and Holm (Proc Roy Soc, 2013). These models have a Kelvin circulation theorem that holds on all materially-transported closed loops, not just those loops on isosurfaces of potential temperature. Potential vorticity conservation can be derived directly from this circulation theorem. In this paper, we show that this property is due to these models having a relabelling symmetry for every single diffeomorphism of the vertical slice that preserves the density, not just those diffeomorphisms that preserve the potential temperature. This is developed using the methodology of Cotter and Holm (Foundations of Computational Mathematics, 2012).

Citation: Colin J. Cotter, Michael John Priestley Cullen. Particle relabelling symmetries and Noether's theorem for vertical slice models. Journal of Geometric Mechanics, 2019, 11 (2) : 139-151. doi: 10.3934/jgm.2019007
References:
[1]

C. J. Cotter and D. D. Holm, On Noether's theorem for the Euler–Poincaré equation on the diffeomorphism group with advected quantities, Foundations of Computational Mathematics, 13 (2013), 457-477.  doi: 10.1007/s10208-012-9126-8.  Google Scholar

[2]

C. J. Cotter and D. D. Holm, A variational formulation of vertical slice models, Proc. R. Soc. A, 469 (2013), 20120678, 17pp. doi: 10.1098/rspa.2012.0678.  Google Scholar

[3]

C. Cotter and D. Holm, Variational formulations of sound-proof models, Quarterly Journal of the Royal Meteorological Society, 140 (2014), 1966-1973.  doi: 10.1002/qj.2260.  Google Scholar

[4] M. J. P. Cullen, A Mathematical Theory of Large-Scale Atmospheric Flow, Imperial College Press, 2006.   Google Scholar
[5]

M. J. P. Cullen, Modelling atmospheric flows, Acta Numerica, 16 (2007), 67-154.  doi: 10.1017/S0962492906290019.  Google Scholar

[6]

M. J. P. Cullen, A comparison of numerical solutions to the Eady frontogenesis problem, Q. J. R. Meteorol. Soc., 134 (2008), 2143-2155.  doi: 10.1002/qj.335.  Google Scholar

[7]

D. D. HolmJ. E. Marsden and T. S. Ratiu, The Euler–Poincaré equations and semidirect products with applications to continuum theories, Adv. in Math., 137 (1998), 1-81.  doi: 10.1006/aima.1998.1721.  Google Scholar

[8]

M. Oliver, Variational asymptotics for rotating shallow water near geostrophy: A transformational approach, Journal of Fluid Mechanics, 551 (2006), 197-234.  doi: 10.1017/S0022112005008256.  Google Scholar

[9]

A. R. VisramC. J. Cotter and M. J. P. Cullen, A framework for evaluating model error using asymptotic convergence in the eady model, Quarterly Journal of the Royal Meteorological Society, 140 (2014), 1629-1639.  doi: 10.1002/qj.2244.  Google Scholar

show all references

References:
[1]

C. J. Cotter and D. D. Holm, On Noether's theorem for the Euler–Poincaré equation on the diffeomorphism group with advected quantities, Foundations of Computational Mathematics, 13 (2013), 457-477.  doi: 10.1007/s10208-012-9126-8.  Google Scholar

[2]

C. J. Cotter and D. D. Holm, A variational formulation of vertical slice models, Proc. R. Soc. A, 469 (2013), 20120678, 17pp. doi: 10.1098/rspa.2012.0678.  Google Scholar

[3]

C. Cotter and D. Holm, Variational formulations of sound-proof models, Quarterly Journal of the Royal Meteorological Society, 140 (2014), 1966-1973.  doi: 10.1002/qj.2260.  Google Scholar

[4] M. J. P. Cullen, A Mathematical Theory of Large-Scale Atmospheric Flow, Imperial College Press, 2006.   Google Scholar
[5]

M. J. P. Cullen, Modelling atmospheric flows, Acta Numerica, 16 (2007), 67-154.  doi: 10.1017/S0962492906290019.  Google Scholar

[6]

M. J. P. Cullen, A comparison of numerical solutions to the Eady frontogenesis problem, Q. J. R. Meteorol. Soc., 134 (2008), 2143-2155.  doi: 10.1002/qj.335.  Google Scholar

[7]

D. D. HolmJ. E. Marsden and T. S. Ratiu, The Euler–Poincaré equations and semidirect products with applications to continuum theories, Adv. in Math., 137 (1998), 1-81.  doi: 10.1006/aima.1998.1721.  Google Scholar

[8]

M. Oliver, Variational asymptotics for rotating shallow water near geostrophy: A transformational approach, Journal of Fluid Mechanics, 551 (2006), 197-234.  doi: 10.1017/S0022112005008256.  Google Scholar

[9]

A. R. VisramC. J. Cotter and M. J. P. Cullen, A framework for evaluating model error using asymptotic convergence in the eady model, Quarterly Journal of the Royal Meteorological Society, 140 (2014), 1629-1639.  doi: 10.1002/qj.2244.  Google Scholar

[1]

Kun Hu, Yuanshi Wang. Dynamics of consumer-resource systems with consumer's dispersal between patches. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021077

[2]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374

[3]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[4]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[5]

Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021062

[6]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[7]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[8]

Ru Li, Guolin Yu. Strict efficiency of a multi-product supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2203-2215. doi: 10.3934/jimo.2020065

[9]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2899-2920. doi: 10.3934/dcdsb.2020210

[10]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395

[11]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[12]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[13]

Hao Li, Honglin Chen, Matt Haberland, Andrea L. Bertozzi, P. Jeffrey Brantingham. PDEs on graphs for semi-supervised learning applied to first-person activity recognition in body-worn video. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021039

[14]

Linyao Ge, Baoxiang Huang, Weibo Wei, Zhenkuan Pan. Semi-Supervised classification of hyperspectral images using discrete nonlocal variation Potts Model. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021003

[15]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[16]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[17]

Patrick Henning, Anders M. N. Niklasson. Shadow Lagrangian dynamics for superfluidity. Kinetic & Related Models, 2021, 14 (2) : 303-321. doi: 10.3934/krm.2021006

[18]

Yangrong Li, Fengling Wang, Shuang Yang. Part-convergent cocycles and semi-convergent attractors of stochastic 2D-Ginzburg-Landau delay equations toward zero-memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3643-3665. doi: 10.3934/dcdsb.2020250

[19]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[20]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (114)
  • HTML views (647)
  • Cited by (0)

[Back to Top]