June  2019, 11(2): 153-165. doi: 10.3934/jgm.2019008

Euler-Lagrangian approach to 3D stochastic Euler equations

1. 

Scuola Normale Superiore of Pisa, Piazza dei Cavalieri, 7, 56124 Pisa, Italy

2. 

Key Laboratory of Random Complex Structures and Data Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

3. 

School of Mathematical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author: Franco Flandoli

Received  March 2018 Revised  February 2019 Published  May 2019

Fund Project: The second author is supported by the National Natural Science Foundation of China (Nos. 11431014, 11571347) and the Youth Innovation Promotion Association, CAS (2017003).

3D stochastic Euler equations with a special form of multiplicative noise are considered. A Constantin-Iyer type representation in Euler-Lagrangian form is given, based on stochastic characteristics. Local existence and uniqueness of solutions in suitable Hölder spaces is proved from the Euler-Lagrangian formulation.

Citation: Franco Flandoli, Dejun Luo. Euler-Lagrangian approach to 3D stochastic Euler equations. Journal of Geometric Mechanics, 2019, 11 (2) : 153-165. doi: 10.3934/jgm.2019008
References:
[1]

J. M. Bismut and D. Michel, Diffusions conditionelles. I. Hypoellipticité partielle, J. Funct. Anal., 44 (1981), 174-211.  doi: 10.1016/0022-1236(81)90010-0.  Google Scholar

[2]

Z. BrzeniakM. Capinski and F. Flandoli, Stochastic Navier-Stokes equations with multiplicative noise, Stoch. Anal. Appl., 10 (1992), 523-532.  doi: 10.1080/07362999208809288.  Google Scholar

[3]

P. Constantin, An Euler–Lagrangian approach for incompressible fluids: local theory, J. Amer. Math. Soc., 14 (2001), 263-278.  doi: 10.1090/S0894-0347-00-00364-7.  Google Scholar

[4]

P. Constantin and G. Iyer, A stochastic Lagrangian representation of the three-dimensional incompressible Navier–Stokes equations, Comm. Pure Appl. Math., 61 (2008), 330-345.  doi: 10.1002/cpa.20192.  Google Scholar

[5]

D. Crisan, F. Flandoli and D. D. Holm, Solution properties of a 3D stochastic Euler fluid equation, J Nonlinear Sci, (2018), 1–58, https://doi.org/10.1007/s00332-018-9506-6. doi: 10.1007/s00332-018-9506-6.  Google Scholar

[6]

R. Duboscq and A. Réveillac, Stochastic regularization effects of semi-martingales on random functions, J. Math. Pures Appl. (9), 106 (2016), 1141–1173. doi: 10.1016/j.matpur.2016.04.004.  Google Scholar

[7]

G. FalkovichK. Gawedzki and M. Vergassola, Particles and fields in fluid turbulence, Rev. Modern Phys., 73 (2001), 913-975.  doi: 10.1103/RevModPhys.73.913.  Google Scholar

[8]

S. Fang and D. Luo, Constantin and Iyer's representation formula for the Navier-Stokes equations on manifolds, Potential Anal., 48 (2018), 181-206.  doi: 10.1007/s11118-017-9631-0.  Google Scholar

[9]

E. Fedrizzi and F. Flandoli, Noise prevents singularities in linear transport equations, J. Funct. Anal., 264 (2013), 1329-1354.  doi: 10.1016/j.jfa.2013.01.003.  Google Scholar

[10]

F. Flandoli, Random Perturbation of PDEs and Fluid Dynamic Models, École d'été de Saint Flour 2010, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-18231-0.  Google Scholar

[11]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391.  doi: 10.1007/BF01192467.  Google Scholar

[12]

F. FlandoliM. Maurelli and M. Neklyudov, Noise prevents infinite stretching of the passive field in a stochastic vector advection equation, J. Math. Fluid Mech., 16 (2014), 805-822.  doi: 10.1007/s00021-014-0187-0.  Google Scholar

[13]

F. Flandoli and C. Olivera, Well-posedness of the vector advection equations by stochastic perturbation, J. Evol. Equ., 18 (2018), 277-301.  doi: 10.1007/s00028-017-0401-7.  Google Scholar

[14]

F. Gay-Balmaz and D. D. Holm, Stochastic geometric models with non-stationary spatial correlations in Lagrangian fluid flows, J. Nonlinear Sci., 28 (2018), 873-904.  doi: 10.1007/s00332-017-9431-0.  Google Scholar

[15]

D. D. Holm, Variational principles for stochastic fluid dynamics, Proceedings of the Royal Society A, 471 (2015), 20140963, 19pp. doi: 10.1098/rspa.2014.0963.  Google Scholar

[16]

G. Iyer, A stochastic perturbation of inviscid flows, Commun. Math. Phys., 266 (2006), 631-645.  doi: 10.1007/s00220-006-0058-5.  Google Scholar

[17]

H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, École d'été de Probabilités de Saint Flour, 1982, 143–303, Lecture Notes in Math., 1097, Springer, Berlin, 1984. doi: 10.1007/BFb0099433.  Google Scholar

[18]

H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge Studies in Advanced Mathematics, 24, Cambridge University Press, Cambridge, 1990.  Google Scholar

[19]

R. Mikulevicius and B. L. Rozovskii, Global $L_2$-solutions of stochastic Navier-Stokes equations, Ann. Probab., 33 (2005), 137-176.  doi: 10.1214/009117904000000630.  Google Scholar

[20]

D. Ocone and E. Pardoux, A generalized Itô–Ventzell formula. Application to a class of anticipating stochastic differential equations, Ann. Inst. Henri Poincaré, 25 (1989), 39-71.   Google Scholar

[21]

X. Zhang, A stochastic representation for backward incompressible Navier–Stokes equations, Probab. Theory Related Fields, 148 (2010), 305-332.  doi: 10.1007/s00440-009-0234-6.  Google Scholar

show all references

References:
[1]

J. M. Bismut and D. Michel, Diffusions conditionelles. I. Hypoellipticité partielle, J. Funct. Anal., 44 (1981), 174-211.  doi: 10.1016/0022-1236(81)90010-0.  Google Scholar

[2]

Z. BrzeniakM. Capinski and F. Flandoli, Stochastic Navier-Stokes equations with multiplicative noise, Stoch. Anal. Appl., 10 (1992), 523-532.  doi: 10.1080/07362999208809288.  Google Scholar

[3]

P. Constantin, An Euler–Lagrangian approach for incompressible fluids: local theory, J. Amer. Math. Soc., 14 (2001), 263-278.  doi: 10.1090/S0894-0347-00-00364-7.  Google Scholar

[4]

P. Constantin and G. Iyer, A stochastic Lagrangian representation of the three-dimensional incompressible Navier–Stokes equations, Comm. Pure Appl. Math., 61 (2008), 330-345.  doi: 10.1002/cpa.20192.  Google Scholar

[5]

D. Crisan, F. Flandoli and D. D. Holm, Solution properties of a 3D stochastic Euler fluid equation, J Nonlinear Sci, (2018), 1–58, https://doi.org/10.1007/s00332-018-9506-6. doi: 10.1007/s00332-018-9506-6.  Google Scholar

[6]

R. Duboscq and A. Réveillac, Stochastic regularization effects of semi-martingales on random functions, J. Math. Pures Appl. (9), 106 (2016), 1141–1173. doi: 10.1016/j.matpur.2016.04.004.  Google Scholar

[7]

G. FalkovichK. Gawedzki and M. Vergassola, Particles and fields in fluid turbulence, Rev. Modern Phys., 73 (2001), 913-975.  doi: 10.1103/RevModPhys.73.913.  Google Scholar

[8]

S. Fang and D. Luo, Constantin and Iyer's representation formula for the Navier-Stokes equations on manifolds, Potential Anal., 48 (2018), 181-206.  doi: 10.1007/s11118-017-9631-0.  Google Scholar

[9]

E. Fedrizzi and F. Flandoli, Noise prevents singularities in linear transport equations, J. Funct. Anal., 264 (2013), 1329-1354.  doi: 10.1016/j.jfa.2013.01.003.  Google Scholar

[10]

F. Flandoli, Random Perturbation of PDEs and Fluid Dynamic Models, École d'été de Saint Flour 2010, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-18231-0.  Google Scholar

[11]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391.  doi: 10.1007/BF01192467.  Google Scholar

[12]

F. FlandoliM. Maurelli and M. Neklyudov, Noise prevents infinite stretching of the passive field in a stochastic vector advection equation, J. Math. Fluid Mech., 16 (2014), 805-822.  doi: 10.1007/s00021-014-0187-0.  Google Scholar

[13]

F. Flandoli and C. Olivera, Well-posedness of the vector advection equations by stochastic perturbation, J. Evol. Equ., 18 (2018), 277-301.  doi: 10.1007/s00028-017-0401-7.  Google Scholar

[14]

F. Gay-Balmaz and D. D. Holm, Stochastic geometric models with non-stationary spatial correlations in Lagrangian fluid flows, J. Nonlinear Sci., 28 (2018), 873-904.  doi: 10.1007/s00332-017-9431-0.  Google Scholar

[15]

D. D. Holm, Variational principles for stochastic fluid dynamics, Proceedings of the Royal Society A, 471 (2015), 20140963, 19pp. doi: 10.1098/rspa.2014.0963.  Google Scholar

[16]

G. Iyer, A stochastic perturbation of inviscid flows, Commun. Math. Phys., 266 (2006), 631-645.  doi: 10.1007/s00220-006-0058-5.  Google Scholar

[17]

H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, École d'été de Probabilités de Saint Flour, 1982, 143–303, Lecture Notes in Math., 1097, Springer, Berlin, 1984. doi: 10.1007/BFb0099433.  Google Scholar

[18]

H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge Studies in Advanced Mathematics, 24, Cambridge University Press, Cambridge, 1990.  Google Scholar

[19]

R. Mikulevicius and B. L. Rozovskii, Global $L_2$-solutions of stochastic Navier-Stokes equations, Ann. Probab., 33 (2005), 137-176.  doi: 10.1214/009117904000000630.  Google Scholar

[20]

D. Ocone and E. Pardoux, A generalized Itô–Ventzell formula. Application to a class of anticipating stochastic differential equations, Ann. Inst. Henri Poincaré, 25 (1989), 39-71.   Google Scholar

[21]

X. Zhang, A stochastic representation for backward incompressible Navier–Stokes equations, Probab. Theory Related Fields, 148 (2010), 305-332.  doi: 10.1007/s00440-009-0234-6.  Google Scholar

[1]

Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021062

[2]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003

[3]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[4]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[5]

Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021083

[6]

Yunjuan Jin, Aifang Qu, Hairong Yuan. Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021048

[7]

Haiyan Wang, Jinyan Fan. Convergence properties of inexact Levenberg-Marquardt method under Hölderian local error bound. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2265-2275. doi: 10.3934/jimo.2020068

[8]

Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069

[9]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[10]

Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021104

[11]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[12]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[13]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[14]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[15]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[16]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[17]

Tobias Breiten, Sergey Dolgov, Martin Stoll. Solving differential Riccati equations: A nonlinear space-time method using tensor trains. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 407-429. doi: 10.3934/naco.2020034

[18]

Patrick Henning, Anders M. N. Niklasson. Shadow Lagrangian dynamics for superfluidity. Kinetic & Related Models, 2021, 14 (2) : 303-321. doi: 10.3934/krm.2021006

[19]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[20]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (109)
  • HTML views (241)
  • Cited by (3)

Other articles
by authors

[Back to Top]