June  2019, 11(2): 153-165. doi: 10.3934/jgm.2019008

Euler-Lagrangian approach to 3D stochastic Euler equations

1. 

Scuola Normale Superiore of Pisa, Piazza dei Cavalieri, 7, 56124 Pisa, Italy

2. 

Key Laboratory of Random Complex Structures and Data Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

3. 

School of Mathematical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author: Franco Flandoli

Received  March 2018 Revised  February 2019 Published  May 2019

Fund Project: The second author is supported by the National Natural Science Foundation of China (Nos. 11431014, 11571347) and the Youth Innovation Promotion Association, CAS (2017003)

3D stochastic Euler equations with a special form of multiplicative noise are considered. A Constantin-Iyer type representation in Euler-Lagrangian form is given, based on stochastic characteristics. Local existence and uniqueness of solutions in suitable Hölder spaces is proved from the Euler-Lagrangian formulation.

Citation: Franco Flandoli, Dejun Luo. Euler-Lagrangian approach to 3D stochastic Euler equations. Journal of Geometric Mechanics, 2019, 11 (2) : 153-165. doi: 10.3934/jgm.2019008
References:
[1]

J. M. Bismut and D. Michel, Diffusions conditionelles. I. Hypoellipticité partielle, J. Funct. Anal., 44 (1981), 174-211.  doi: 10.1016/0022-1236(81)90010-0.  Google Scholar

[2]

Z. BrzeniakM. Capinski and F. Flandoli, Stochastic Navier-Stokes equations with multiplicative noise, Stoch. Anal. Appl., 10 (1992), 523-532.  doi: 10.1080/07362999208809288.  Google Scholar

[3]

P. Constantin, An Euler–Lagrangian approach for incompressible fluids: local theory, J. Amer. Math. Soc., 14 (2001), 263-278.  doi: 10.1090/S0894-0347-00-00364-7.  Google Scholar

[4]

P. Constantin and G. Iyer, A stochastic Lagrangian representation of the three-dimensional incompressible Navier–Stokes equations, Comm. Pure Appl. Math., 61 (2008), 330-345.  doi: 10.1002/cpa.20192.  Google Scholar

[5]

D. Crisan, F. Flandoli and D. D. Holm, Solution properties of a 3D stochastic Euler fluid equation, J Nonlinear Sci, (2018), 1–58, https://doi.org/10.1007/s00332-018-9506-6. doi: 10.1007/s00332-018-9506-6.  Google Scholar

[6]

R. Duboscq and A. Réveillac, Stochastic regularization effects of semi-martingales on random functions, J. Math. Pures Appl. (9), 106 (2016), 1141–1173. doi: 10.1016/j.matpur.2016.04.004.  Google Scholar

[7]

G. FalkovichK. Gawedzki and M. Vergassola, Particles and fields in fluid turbulence, Rev. Modern Phys., 73 (2001), 913-975.  doi: 10.1103/RevModPhys.73.913.  Google Scholar

[8]

S. Fang and D. Luo, Constantin and Iyer's representation formula for the Navier-Stokes equations on manifolds, Potential Anal., 48 (2018), 181-206.  doi: 10.1007/s11118-017-9631-0.  Google Scholar

[9]

E. Fedrizzi and F. Flandoli, Noise prevents singularities in linear transport equations, J. Funct. Anal., 264 (2013), 1329-1354.  doi: 10.1016/j.jfa.2013.01.003.  Google Scholar

[10]

F. Flandoli, Random Perturbation of PDEs and Fluid Dynamic Models, École d'été de Saint Flour 2010, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-18231-0.  Google Scholar

[11]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391.  doi: 10.1007/BF01192467.  Google Scholar

[12]

F. FlandoliM. Maurelli and M. Neklyudov, Noise prevents infinite stretching of the passive field in a stochastic vector advection equation, J. Math. Fluid Mech., 16 (2014), 805-822.  doi: 10.1007/s00021-014-0187-0.  Google Scholar

[13]

F. Flandoli and C. Olivera, Well-posedness of the vector advection equations by stochastic perturbation, J. Evol. Equ., 18 (2018), 277-301.  doi: 10.1007/s00028-017-0401-7.  Google Scholar

[14]

F. Gay-Balmaz and D. D. Holm, Stochastic geometric models with non-stationary spatial correlations in Lagrangian fluid flows, J. Nonlinear Sci., 28 (2018), 873-904.  doi: 10.1007/s00332-017-9431-0.  Google Scholar

[15]

D. D. Holm, Variational principles for stochastic fluid dynamics, Proceedings of the Royal Society A, 471 (2015), 20140963, 19pp. doi: 10.1098/rspa.2014.0963.  Google Scholar

[16]

G. Iyer, A stochastic perturbation of inviscid flows, Commun. Math. Phys., 266 (2006), 631-645.  doi: 10.1007/s00220-006-0058-5.  Google Scholar

[17]

H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, École d'été de Probabilités de Saint Flour, 1982, 143–303, Lecture Notes in Math., 1097, Springer, Berlin, 1984. doi: 10.1007/BFb0099433.  Google Scholar

[18]

H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge Studies in Advanced Mathematics, 24, Cambridge University Press, Cambridge, 1990.  Google Scholar

[19]

R. Mikulevicius and B. L. Rozovskii, Global $L_2$-solutions of stochastic Navier-Stokes equations, Ann. Probab., 33 (2005), 137-176.  doi: 10.1214/009117904000000630.  Google Scholar

[20]

D. Ocone and E. Pardoux, A generalized Itô–Ventzell formula. Application to a class of anticipating stochastic differential equations, Ann. Inst. Henri Poincaré, 25 (1989), 39-71.   Google Scholar

[21]

X. Zhang, A stochastic representation for backward incompressible Navier–Stokes equations, Probab. Theory Related Fields, 148 (2010), 305-332.  doi: 10.1007/s00440-009-0234-6.  Google Scholar

show all references

References:
[1]

J. M. Bismut and D. Michel, Diffusions conditionelles. I. Hypoellipticité partielle, J. Funct. Anal., 44 (1981), 174-211.  doi: 10.1016/0022-1236(81)90010-0.  Google Scholar

[2]

Z. BrzeniakM. Capinski and F. Flandoli, Stochastic Navier-Stokes equations with multiplicative noise, Stoch. Anal. Appl., 10 (1992), 523-532.  doi: 10.1080/07362999208809288.  Google Scholar

[3]

P. Constantin, An Euler–Lagrangian approach for incompressible fluids: local theory, J. Amer. Math. Soc., 14 (2001), 263-278.  doi: 10.1090/S0894-0347-00-00364-7.  Google Scholar

[4]

P. Constantin and G. Iyer, A stochastic Lagrangian representation of the three-dimensional incompressible Navier–Stokes equations, Comm. Pure Appl. Math., 61 (2008), 330-345.  doi: 10.1002/cpa.20192.  Google Scholar

[5]

D. Crisan, F. Flandoli and D. D. Holm, Solution properties of a 3D stochastic Euler fluid equation, J Nonlinear Sci, (2018), 1–58, https://doi.org/10.1007/s00332-018-9506-6. doi: 10.1007/s00332-018-9506-6.  Google Scholar

[6]

R. Duboscq and A. Réveillac, Stochastic regularization effects of semi-martingales on random functions, J. Math. Pures Appl. (9), 106 (2016), 1141–1173. doi: 10.1016/j.matpur.2016.04.004.  Google Scholar

[7]

G. FalkovichK. Gawedzki and M. Vergassola, Particles and fields in fluid turbulence, Rev. Modern Phys., 73 (2001), 913-975.  doi: 10.1103/RevModPhys.73.913.  Google Scholar

[8]

S. Fang and D. Luo, Constantin and Iyer's representation formula for the Navier-Stokes equations on manifolds, Potential Anal., 48 (2018), 181-206.  doi: 10.1007/s11118-017-9631-0.  Google Scholar

[9]

E. Fedrizzi and F. Flandoli, Noise prevents singularities in linear transport equations, J. Funct. Anal., 264 (2013), 1329-1354.  doi: 10.1016/j.jfa.2013.01.003.  Google Scholar

[10]

F. Flandoli, Random Perturbation of PDEs and Fluid Dynamic Models, École d'été de Saint Flour 2010, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-18231-0.  Google Scholar

[11]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391.  doi: 10.1007/BF01192467.  Google Scholar

[12]

F. FlandoliM. Maurelli and M. Neklyudov, Noise prevents infinite stretching of the passive field in a stochastic vector advection equation, J. Math. Fluid Mech., 16 (2014), 805-822.  doi: 10.1007/s00021-014-0187-0.  Google Scholar

[13]

F. Flandoli and C. Olivera, Well-posedness of the vector advection equations by stochastic perturbation, J. Evol. Equ., 18 (2018), 277-301.  doi: 10.1007/s00028-017-0401-7.  Google Scholar

[14]

F. Gay-Balmaz and D. D. Holm, Stochastic geometric models with non-stationary spatial correlations in Lagrangian fluid flows, J. Nonlinear Sci., 28 (2018), 873-904.  doi: 10.1007/s00332-017-9431-0.  Google Scholar

[15]

D. D. Holm, Variational principles for stochastic fluid dynamics, Proceedings of the Royal Society A, 471 (2015), 20140963, 19pp. doi: 10.1098/rspa.2014.0963.  Google Scholar

[16]

G. Iyer, A stochastic perturbation of inviscid flows, Commun. Math. Phys., 266 (2006), 631-645.  doi: 10.1007/s00220-006-0058-5.  Google Scholar

[17]

H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, École d'été de Probabilités de Saint Flour, 1982, 143–303, Lecture Notes in Math., 1097, Springer, Berlin, 1984. doi: 10.1007/BFb0099433.  Google Scholar

[18]

H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge Studies in Advanced Mathematics, 24, Cambridge University Press, Cambridge, 1990.  Google Scholar

[19]

R. Mikulevicius and B. L. Rozovskii, Global $L_2$-solutions of stochastic Navier-Stokes equations, Ann. Probab., 33 (2005), 137-176.  doi: 10.1214/009117904000000630.  Google Scholar

[20]

D. Ocone and E. Pardoux, A generalized Itô–Ventzell formula. Application to a class of anticipating stochastic differential equations, Ann. Inst. Henri Poincaré, 25 (1989), 39-71.   Google Scholar

[21]

X. Zhang, A stochastic representation for backward incompressible Navier–Stokes equations, Probab. Theory Related Fields, 148 (2010), 305-332.  doi: 10.1007/s00440-009-0234-6.  Google Scholar

[1]

Houyu Jia, Xiaofeng Liu. Local existence and blowup criterion of the Lagrangian averaged Euler equations in Besov spaces. Communications on Pure & Applied Analysis, 2008, 7 (4) : 845-852. doi: 10.3934/cpaa.2008.7.845

[2]

Thomas Y. Hou, Danping Yang, Hongyu Ran. Multiscale analysis in Lagrangian formulation for the 2-D incompressible Euler equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1153-1186. doi: 10.3934/dcds.2005.13.1153

[3]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[4]

Harish S. Bhat, Razvan C. Fetecau. Lagrangian averaging for the 1D compressible Euler equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 979-1000. doi: 10.3934/dcdsb.2006.6.979

[5]

Thomas Y. Hou, Zuoqiang Shi. Dynamic growth estimates of maximum vorticity for 3D incompressible Euler equations and the SQG model. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1449-1463. doi: 10.3934/dcds.2012.32.1449

[6]

Igor Kukavica, Vlad C. Vicol. The domain of analyticity of solutions to the three-dimensional Euler equations in a half space. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 285-303. doi: 10.3934/dcds.2011.29.285

[7]

Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741

[8]

Bahareh Akhtari, Esmail Babolian, Andreas Neuenkirch. An Euler scheme for stochastic delay differential equations on unbounded domains: Pathwise convergence. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 23-38. doi: 10.3934/dcdsb.2015.20.23

[9]

Yachun Li, Qiufang Shi. Global existence of the entropy solutions to the isentropic relativistic Euler equations. Communications on Pure & Applied Analysis, 2005, 4 (4) : 763-778. doi: 10.3934/cpaa.2005.4.763

[10]

Markus Dick, Martin Gugat, Günter Leugering. A strict $H^1$-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 225-244. doi: 10.3934/naco.2011.1.225

[11]

Luca Lorenzi. Optimal Hölder regularity for nonautonomous Kolmogorov equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 169-191. doi: 10.3934/dcdss.2011.4.169

[12]

Marcel Oliver. The Lagrangian averaged Euler equations as the short-time inviscid limit of the Navier–Stokes equations with Besov class data in $\mathbb{R}^2$. Communications on Pure & Applied Analysis, 2002, 1 (2) : 221-235. doi: 10.3934/cpaa.2002.1.221

[13]

M. Petcu. Euler equation in a channel in space dimension 2 and 3. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 755-778. doi: 10.3934/dcds.2005.13.755

[14]

Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure & Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353

[15]

Gui-Qiang G. Chen, Hairong Yuan. Local uniqueness of steady spherical transonic shock-fronts for the three--dimensional full Euler equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2515-2542. doi: 10.3934/cpaa.2013.12.2515

[16]

Okihiro Sawada. Analytic rates of solutions to the Euler equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1409-1415. doi: 10.3934/dcdss.2013.6.1409

[17]

Luigi Ambrosio. Variational models for incompressible Euler equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 1-10. doi: 10.3934/dcdsb.2009.11.1

[18]

Łukasz Struski, Jacek Tabor. Expansivity implies existence of Hölder continuous Lyapunov function. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3575-3589. doi: 10.3934/dcdsb.2017180

[19]

Jianwei Yang, Ruxu Lian, Shu Wang. Incompressible type euler as scaling limit of compressible Euler-Maxwell equations. Communications on Pure & Applied Analysis, 2013, 12 (1) : 503-518. doi: 10.3934/cpaa.2013.12.503

[20]

Yongcai Geng. Singularity formation for relativistic Euler and Euler-Poisson equations with repulsive force. Communications on Pure & Applied Analysis, 2015, 14 (2) : 549-564. doi: 10.3934/cpaa.2015.14.549

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (42)
  • HTML views (198)
  • Cited by (0)

Other articles
by authors

[Back to Top]