June  2019, 11(2): 167-185. doi: 10.3934/jgm.2019009

Riemann-Hilbert problem, integrability and reductions

1. 

Department of Applied Mathematics, National Research Nuclear University MEPHI, 31 Kashirskoe Shosse, Moscow 115409, Russian Federation

2. 

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 Acad. G. Bonchev Street, Sofia 1113, Bulgaria

3. 

School of Mathematical Sciences, Technological University Dublin - City Campus, Kevin Street, Dublin D08 NF82, Ireland

4. 

Faculty of Mathematics and Infromatics, Sofia University St. Kliment Ohridsky, 5 James Bourchier Blvd., Sofia 1164, Bulgaria

5. 

Institute for Advanced Physical Studies, New Bulgarian University, 21 Montevideo Street, Sofia 1618, Bulgaria

* Corresponding author: R. I. Ivanov

Received  April 2018 Revised  March 2019 Published  May 2019

The present paper is dedicated to integrable models with Mikhailov reduction groups $G_R \simeq \mathbb{D}_h.$ Their Lax representation allows us to prove, that their solution is equivalent to solving Riemann-Hilbert problems, whose contours depend on the realization of the $G_R$-action on the spectral parameter. Two new examples of Nonlinear Evolution Equations (NLEE) with $\mathbb{D}_h$ symmetries are presented.

Citation: Vladimir S. Gerdjikov, Rossen I. Ivanov, Aleksander A. Stefanov. Riemann-Hilbert problem, integrability and reductions. Journal of Geometric Mechanics, 2019, 11 (2) : 167-185. doi: 10.3934/jgm.2019009
References:
[1]

M. J. Ablowitz, B. Prinari and A. D. Trubach, Discrete and Continuous Nonlinear Schrödinger Systems, Cambridge University press, London Mathematical Society Lecture Note Series, 2004.  Google Scholar

[2]

M. Adler, On a trace functional for pseudo-differential operators and the symplectic structure of the Korteweg-deVries Equation, Invent. Math., 50 (1979), 219-248.  doi: 10.1007/BF01410079.  Google Scholar

[3]

N. C. BabalicR. Constantinescu and V. Gerdjikov, On the solutions of a family of Tzitzeica equations, J. Geom. Symm. Physics, 37 (2015), 1-24.  doi: 10.7546/jgsp-37-2015-1-24.  Google Scholar

[4]

N. C. BabalicR. Constantinescu and V. S. Gerdjikov, On Tzitzeica equation and spectral properties of related Lax operators, Balkan Journal of Geometry and Its Applications, 19 (2014), 11-22.   Google Scholar

[5]

R. Beals and R. Coifman, Inverse Scattering and Evolution Equations, Commun. Pure Appl. Math., 38 (1985), 29-42.  doi: 10.1002/cpa.3160380103.  Google Scholar

[6]

G. Berkeley, A. V. Mikhailov and P. Xenitidis, Darboux transformations with tetrahedral reduction group and related integrable systems, Journal of Mathematical Physics, 57 (2016), 092701, 15pp, arXiv: 1603.03289 doi: 10.1063/1.4962803.  Google Scholar

[7]

A. Borovik, $N$-soliton solutions of the Landau-Lifshitz equation, Pis'ma Zh. Eksp. Teor. Fiz., 28 (1978), 629-632.   Google Scholar

[8]

R. T. Bury, Automorphic Lie Algebras, Corresponding Integrable Systems and Their Soliton Solutions, PhD thesis, University of Leeds, 2010. Google Scholar

[9]

R. T. Bury, A. V. Mikhailov and J. P. Wang, Wave fronts and cascades of soliton interactions in the periodic two dimensional Volterra system, Phys. D, 347 (2017), 21–41, arXiv: 1603.03106v1 [nlin.SI] doi: 10.1016/j.physd.2017.01.003.  Google Scholar

[10]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661–1664; arXiv: patt-sol/9305002 doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[11]

A. Constantin, V. S. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inv. Problems, 22 (2006), 2197–2207; arXiv: nlin/0603019v2 [nlin.SI]. doi: 10.1088/0266-5611/22/6/017.  Google Scholar

[12]

A. ConstantinR. Ivanov and J. Lenells, Inverse scattering transform for the Degasperis–Procesi equation, Nonlinearity, 23 (2010), 2559-2575.  doi: 10.1088/0951-7715/23/10/012.  Google Scholar

[13]

A. DegasperisD. Holm and A. Hone, A new integrable equation with peakon solutions, Theor. Math. Phys., 133 (2002), 1461-1472.  doi: 10.1023/A:1021186408422.  Google Scholar

[14]

L. A. Dickey, Soliton Equations and Hamiltonian Systems, World scientific, 2003. doi: 10.1142/5108.  Google Scholar

[15]

V. Drinfel'd and V. V. Sokolov, Lie algebras and equations of Korteweg - de Vries type, Sov. J. Math., 22 (1995), 25-86.  doi: 10.1142/9789812798244_0002.  Google Scholar

[16]

L. D. Faddeev and L. A. Takhtadjan, Hamiltonian Methods in the Theory of Solitons, Springer Verlag, Berlin, 1987. doi: 10.1007/978-3-540-69969-9.  Google Scholar

[17]

V. S. Gerdjikov, Algebraic and analytic aspects of $N$-wave type equations, Contemporary Mathematics, 301 (2002), 35-68.  doi: 10.1090/conm/301/05158.  Google Scholar

[18]

V. S. Gerdjikov, Riemann-Hilbert Problems with canonical normalization and families of commuting operators, Pliska Stud. Math. Bulgar., 21 (2012), 201–216; arXiv: 1204.2928v1 [nlin.SI].  Google Scholar

[19]

V. S. Gerdjikov, Derivative nonlinear Schrödinger equations with $\mathbb{Z}_N $ and $\mathbb{D}_N $–reductions, Romanian Journal of Physics, 58 (2013), 573-582.   Google Scholar

[20]

V. S. Gerdjikov, M. I. Ivanov, The quadratic bundle of general form and the nonlinear evolution equations. I. Expansions over the "squared" solutions are generalized Fourier transforms, Bulgarian J. Phys., 10 (1983), 13–26 (In Russian).  Google Scholar

[21]

V. S. Gerdjikov and M. I. Ivanov, The quadratic bundle of general form and the nonlinear evolution equations. Ⅱ. Hierarchies of Hamiltonian structures, Bulgarian J. Phys., 10 (1983), 130–143 (In Russian).  Google Scholar

[22]

V. S. GerdjikovG. G. GrahovskiA. V. Mikhailov and T. I. Valchev, On soliton interactions for the hierarchy of a generalised Heisenberg ferromagnetic model on SU(3)/S(U(1)$\times$ U(2)) symmetric space, Journal of Geometry and Symmetry in Physics, 25 (2012), 23-55.  doi: 10.7546/jgsp-25-2012-23-55.  Google Scholar

[23]

V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov and S. K. Varbev, MKdV-type of equations related to $B^{(1)}_{2}$ and $A^{(2)}_{4}$, in Nonlinear Mathematical Physics and Natural Hazards, (eds: Boyka Aneva, Mihaela Kouteva-Guentcheva), Springer Proceedings in Physics, 163 (2015), 59–69. ISBN: 978-3-319-14327-9 (Print) 978-3-319-14328-6 (Online). doi: 10.1007/978-3-319-14328-6_5.  Google Scholar

[24]

V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov and S. K. Varbev, Soliton equations related to the affine Kac-Moody algebra $D^{(1)}_{4}$. Eur. Phys. J. Plus, 130 (2015), 106–123; arXiv: 1412.2383v1 [nlin.SI]. doi: 10.1140/epjp/i2015-15106-5.  Google Scholar

[25]

V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov and S. K. Varbev, On mKdV equations related to the affine Kac-Moody algebra $A_{5}^{(2)}$, J. Geom. Sym. Phys., 39 (2015), 17–31, arXiv: 1512.01475 nlin: SI. doi: 10.7546/jgsp-39-2015-17-31.  Google Scholar

[26]

V. Gerdjikov, G. Vilasi and A. Yanovski, Integrable Hamiltonian Hierarchies. Spectral and Geometric Methods, Lecture Notes in Physics, 748, Springer, Berlin - Heidelberg, 2008. doi: 10.1007/978-3-540-77054-1.  Google Scholar

[27]

V. S. Gerdjikov and A. B. Yanovski, Completeness of the eigenfunctions for the Caudrey–Beals–Coifman system, J. Math. Phys., 35 (1994), 3687-3725.  doi: 10.1063/1.530441.  Google Scholar

[28]

V. S. Gerdjikov and A. B. Yanovski, Riemann-Hilbert Problems, families of commuting operators and soliton equations, Journal of Physics: Conference Series, 482 (2014), 012017. doi: 10.1088/1742-6596/482/1/012017.  Google Scholar

[29]

V. S. Gerdjikov and A. B. Yanovski, On soliton equations with $\mathbb{Z}_{ {h}}$ and $\mathbb{D}_{ {h}}$ reductions: conservation laws and generating operators, J. Geom. Symmetry Phys., 31 (2013), 57-92.  doi: 10.7546/jgsp-31-2013-57-92.  Google Scholar

[30]

V. S. Gerdjikov and A. B. Yanovski, CBC systems with Mikhailov reductions by Coxeter automorphism. Ⅰ. Spectral theory of the recursion operators, Studies in Applied Mathematics, 134 (2015), 145-180.  doi: 10.1111/sapm.12065.  Google Scholar

[31]

M. GürsesA. Karasu and V. V. Sokolov, On construction of recursion operators from Lax representation, Journal of Mathematical Physics, 40 (1999), 6473-6490.  doi: 10.1063/1.533102.  Google Scholar

[32]

J. Haberlin and T. Lyons, Solitons of shallow-water models from energy-dependent spectral problems, Eur. Phys. J. Plus, 133 (2018), 16, arXiv: 1705.04989 [math-ph] doi: 10.1140/epjp/i2018-11848-8.  Google Scholar

[33] S. Helgasson, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York-London, 1978.   Google Scholar
[34]

D. D. Holm, Geometric Mechanics Part I: Dynamics and Symmetry, Imperial College Press: London, 2011. doi: 10.1142/p801.  Google Scholar

[35]

D. D. Holm, Geometric Mechanics Part II: Rotating, Translating and Rolling, Imperial College Press: London, 2011. doi: 10.1142/p802.  Google Scholar

[36]

D. Holm and R. Ivanov, Smooth and peaked solitons of the CH equation, J. Phys. A: Math. Theor., 43 (2010), 434003 (18pp). doi: 10.1088/1751-8113/43/43/434003.  Google Scholar

[37]

D. Holm and R. Ivanov, Two-component CH system: Inverse scattering, peakons and geometry, Inverse Problems, 27 (2011), 045013, 19pp, arXiv: 1009.5374v1 [nlin.SI] doi: 10.1088/0266-5611/27/4/045013.  Google Scholar

[38]

R. Ivanov, On the dressing method for the generalised Zakharov-Shabat system, Nuclear Physics B, 694 (2004), 509–524; math-ph/0402031. doi: 10.1016/j.nuclphysb.2004.06.039.  Google Scholar

[39]

R. Ivanov and T. Lyons, Integrable models for shallow water with energy dependent spectral problems, Journal of Nonlinear Mathematical Physics, 19 (2012), 1240008 (17 pages). doi: 10.1142/S1402925112400086.  Google Scholar

[40]

D. J. Kaup, The three-wave interaction - a nondispersive phenomenon, Stud. Appl. Math., 55 (1976), 9-44.  doi: 10.1002/sapm19765519.  Google Scholar

[41]

D. J. Kaup, On the inverse scattering problem for cubic eigenvalue problems of the class $\psi_{xxx}+6Q\psi_{x}+6R\psi = \lambda \psi $, Stud. Appl. Math., 62 (1980), 189-216.  doi: 10.1002/sapm1980623189.  Google Scholar

[42]

V. KnibbelerS. Lombardo and J. A. Sanders, Higher-Dimensional Automorphic Lie Algebras, Found. Comput. Math., 17 (2017), 987-1035.  doi: 10.1007/s10208-016-9312-1.  Google Scholar

[43]

S. Lombardo and A. V. Mikhailov, Reductions of integrable equations: Dihedral group, J. Phys. A, 37 (2004), 7727–7742; arXiv: nlin/0404013 [nlin.SI] doi: 10.1088/0305-4470/37/31/006.  Google Scholar

[44]

S. Lombardo and A.V. Mikhailov, Reduction groups and Automorphic Lie Algebras, Communication in Mathematical Physics, 258 (2005), 179-202.  doi: 10.1007/s00220-005-1334-5.  Google Scholar

[45]

S. Lombardo and J. Sanders, On the classification of automorphic Lie algebras, Communications in Mathematical Physics, 299 (2010), 793–824; arXiv: 0912.1697 [math.RA]. doi: 10.1007/s00220-010-1092-x.  Google Scholar

[46]

S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov. Phys. JETP, 38 (1974), 248. Google Scholar

[47]

S. V. Manakov and V. E. Zakharov, Soliton theory, in: Physics Review, Vol. Ⅰ, Ⅰ. M. Khalatnikov (ed.), London, (1979), 133–190. Google Scholar

[48]

A. V. Mikhailov, The reduction problem and the inverse scattering problem, Physica D, 3 (1981), 73-117.  doi: 10.1016/0167-2789(81)90120-2.  Google Scholar

[49]

A. V. MikhailovM. A. Olshanetsky and and A. M. Perelomov, Two-dimensional generalized Toda lattice, Comm. Math. Phys., 79 (1981), 473-488.  doi: 10.1007/BF01209308.  Google Scholar

[50]

A. V. MikhailovA. B. Shabat and R. I. Yamilov, The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems, Russian Math. Surveys, 42 (1987), 1-63.  doi: 10.1070/RM1987v042n04ABEH001441.  Google Scholar

[51]

A. V. MikhailovA. B. Shabat and R. I. Yamilov, Extension of the module of invertible transformations. classification of integrable systems, Commun. Math. Phys., 115 (1988), 1-19.  doi: 10.1007/BF01238850.  Google Scholar

[52]

A. V. Mikhailov, A. B. Shabat and V. V. Sokolov, The symmetry approach to classification of integrable equations, In: Zakharov V.E. (eds) What Is Integrability?, 115–184, Springer Series in Nonlinear Dynamics. Springer, Berlin, 1991.  Google Scholar

[53]

A. V. Mikhailov and V. E. Zakharov, On the integrability of classical spinor models in two-dimensional space–time, Commun. Math. Phys., 74 (1980), 21-40.  doi: 10.1007/BF01197576.  Google Scholar

[54]

S. Novikov, S. Manakov, L. Pitaevskii and V. Zakharov, Theory of Solitons: The Inverse Scattering Method, Plenum, Consultants Bureau, New York, 1984.  Google Scholar

[55]

A. B. Shabat, Inverse scattering problem for a system of differential equations, Funct. Anal. Appl., 9 (1975), 244-247.  doi: 10.1007/BF01075603.  Google Scholar

[56]

A. B. Shabat, A one-dimensional scattering theory. Ⅰ, Differ. Uravn., 8 (1972), 164–178 (In Russian).  Google Scholar

[57]

V. V. Sokolov and T. Wolf, Classification of integrable polynomial vector evolution equations, J. Phys. A: Math. Gen., 34 (2001), 11139-11148.  doi: 10.1088/0305-4470/34/49/327.  Google Scholar

[58]

T. I. Valchev, On certain reductions of integrable equations on symmetric spaces, AIP Conference Proceedings, 1340 (2011), 154-164.  doi: 10.1063/1.3567134.  Google Scholar

[59]

A. B. Yanovski and T. I. Valchev, Pseudo-Hermitian reduction of a generalized Heisenberg ferromagnet equation. Ⅰ. Auxiliary system and fundamental properties;, Journal of Nonlinear Mathematical Physics, 25 (2018), 324-350.  doi: 10.1080/14029251.2018.1452676.  Google Scholar

[60]

V. E. Zakharov and S. V. Manakov, On the theory of resonance interactions of wave packets in nonlinear media, Zh. Exp. Teor. Fiz., 69 (1975), 1654-1673.   Google Scholar

[61]

V. E. Zakharov and A. B. Shabat, A scheme for integrating nonlinear evolution equations of mathematical physics by the inverse scattering problem. Ⅰ, Funct. Anal. Appl., 8 (1974), 226-235.  doi: 10.1007/BF01075696.  Google Scholar

[62]

V. E. Zakharov and A. B. Shabat, Integration of nonlinear equations of mathematical physics by the method of inverse scattering Ⅱ., Funct. Anal. Appl., 13 (1979), 166-174.  doi: 10.1007/BF01077483.  Google Scholar

[63]

V. E. Zakharov, Exact solutions of the problem of parametric interaction of wave packets, Dokl. Akad. Nauk SSSR, 228 (1976), 1314-1316.   Google Scholar

[64]

V. E. Zakharov, The inverse scattering method, In: Solitons, R. K. Bullough and P. J. Caudrey (editors), Springer-Verlag, Berlin, (1980), 243–286. Google Scholar

[65]

V. E. Zakharov, Integrable systems in multidimensional spaces, in Mathematical Problems in Theoretical Physics, Lecture Notes in Phys., 153, Springer-Verlag, Berlin, (1982), 190–216. doi: 10.1007/3-540-11192-1_38.  Google Scholar

show all references

References:
[1]

M. J. Ablowitz, B. Prinari and A. D. Trubach, Discrete and Continuous Nonlinear Schrödinger Systems, Cambridge University press, London Mathematical Society Lecture Note Series, 2004.  Google Scholar

[2]

M. Adler, On a trace functional for pseudo-differential operators and the symplectic structure of the Korteweg-deVries Equation, Invent. Math., 50 (1979), 219-248.  doi: 10.1007/BF01410079.  Google Scholar

[3]

N. C. BabalicR. Constantinescu and V. Gerdjikov, On the solutions of a family of Tzitzeica equations, J. Geom. Symm. Physics, 37 (2015), 1-24.  doi: 10.7546/jgsp-37-2015-1-24.  Google Scholar

[4]

N. C. BabalicR. Constantinescu and V. S. Gerdjikov, On Tzitzeica equation and spectral properties of related Lax operators, Balkan Journal of Geometry and Its Applications, 19 (2014), 11-22.   Google Scholar

[5]

R. Beals and R. Coifman, Inverse Scattering and Evolution Equations, Commun. Pure Appl. Math., 38 (1985), 29-42.  doi: 10.1002/cpa.3160380103.  Google Scholar

[6]

G. Berkeley, A. V. Mikhailov and P. Xenitidis, Darboux transformations with tetrahedral reduction group and related integrable systems, Journal of Mathematical Physics, 57 (2016), 092701, 15pp, arXiv: 1603.03289 doi: 10.1063/1.4962803.  Google Scholar

[7]

A. Borovik, $N$-soliton solutions of the Landau-Lifshitz equation, Pis'ma Zh. Eksp. Teor. Fiz., 28 (1978), 629-632.   Google Scholar

[8]

R. T. Bury, Automorphic Lie Algebras, Corresponding Integrable Systems and Their Soliton Solutions, PhD thesis, University of Leeds, 2010. Google Scholar

[9]

R. T. Bury, A. V. Mikhailov and J. P. Wang, Wave fronts and cascades of soliton interactions in the periodic two dimensional Volterra system, Phys. D, 347 (2017), 21–41, arXiv: 1603.03106v1 [nlin.SI] doi: 10.1016/j.physd.2017.01.003.  Google Scholar

[10]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661–1664; arXiv: patt-sol/9305002 doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[11]

A. Constantin, V. S. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inv. Problems, 22 (2006), 2197–2207; arXiv: nlin/0603019v2 [nlin.SI]. doi: 10.1088/0266-5611/22/6/017.  Google Scholar

[12]

A. ConstantinR. Ivanov and J. Lenells, Inverse scattering transform for the Degasperis–Procesi equation, Nonlinearity, 23 (2010), 2559-2575.  doi: 10.1088/0951-7715/23/10/012.  Google Scholar

[13]

A. DegasperisD. Holm and A. Hone, A new integrable equation with peakon solutions, Theor. Math. Phys., 133 (2002), 1461-1472.  doi: 10.1023/A:1021186408422.  Google Scholar

[14]

L. A. Dickey, Soliton Equations and Hamiltonian Systems, World scientific, 2003. doi: 10.1142/5108.  Google Scholar

[15]

V. Drinfel'd and V. V. Sokolov, Lie algebras and equations of Korteweg - de Vries type, Sov. J. Math., 22 (1995), 25-86.  doi: 10.1142/9789812798244_0002.  Google Scholar

[16]

L. D. Faddeev and L. A. Takhtadjan, Hamiltonian Methods in the Theory of Solitons, Springer Verlag, Berlin, 1987. doi: 10.1007/978-3-540-69969-9.  Google Scholar

[17]

V. S. Gerdjikov, Algebraic and analytic aspects of $N$-wave type equations, Contemporary Mathematics, 301 (2002), 35-68.  doi: 10.1090/conm/301/05158.  Google Scholar

[18]

V. S. Gerdjikov, Riemann-Hilbert Problems with canonical normalization and families of commuting operators, Pliska Stud. Math. Bulgar., 21 (2012), 201–216; arXiv: 1204.2928v1 [nlin.SI].  Google Scholar

[19]

V. S. Gerdjikov, Derivative nonlinear Schrödinger equations with $\mathbb{Z}_N $ and $\mathbb{D}_N $–reductions, Romanian Journal of Physics, 58 (2013), 573-582.   Google Scholar

[20]

V. S. Gerdjikov, M. I. Ivanov, The quadratic bundle of general form and the nonlinear evolution equations. I. Expansions over the "squared" solutions are generalized Fourier transforms, Bulgarian J. Phys., 10 (1983), 13–26 (In Russian).  Google Scholar

[21]

V. S. Gerdjikov and M. I. Ivanov, The quadratic bundle of general form and the nonlinear evolution equations. Ⅱ. Hierarchies of Hamiltonian structures, Bulgarian J. Phys., 10 (1983), 130–143 (In Russian).  Google Scholar

[22]

V. S. GerdjikovG. G. GrahovskiA. V. Mikhailov and T. I. Valchev, On soliton interactions for the hierarchy of a generalised Heisenberg ferromagnetic model on SU(3)/S(U(1)$\times$ U(2)) symmetric space, Journal of Geometry and Symmetry in Physics, 25 (2012), 23-55.  doi: 10.7546/jgsp-25-2012-23-55.  Google Scholar

[23]

V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov and S. K. Varbev, MKdV-type of equations related to $B^{(1)}_{2}$ and $A^{(2)}_{4}$, in Nonlinear Mathematical Physics and Natural Hazards, (eds: Boyka Aneva, Mihaela Kouteva-Guentcheva), Springer Proceedings in Physics, 163 (2015), 59–69. ISBN: 978-3-319-14327-9 (Print) 978-3-319-14328-6 (Online). doi: 10.1007/978-3-319-14328-6_5.  Google Scholar

[24]

V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov and S. K. Varbev, Soliton equations related to the affine Kac-Moody algebra $D^{(1)}_{4}$. Eur. Phys. J. Plus, 130 (2015), 106–123; arXiv: 1412.2383v1 [nlin.SI]. doi: 10.1140/epjp/i2015-15106-5.  Google Scholar

[25]

V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov and S. K. Varbev, On mKdV equations related to the affine Kac-Moody algebra $A_{5}^{(2)}$, J. Geom. Sym. Phys., 39 (2015), 17–31, arXiv: 1512.01475 nlin: SI. doi: 10.7546/jgsp-39-2015-17-31.  Google Scholar

[26]

V. Gerdjikov, G. Vilasi and A. Yanovski, Integrable Hamiltonian Hierarchies. Spectral and Geometric Methods, Lecture Notes in Physics, 748, Springer, Berlin - Heidelberg, 2008. doi: 10.1007/978-3-540-77054-1.  Google Scholar

[27]

V. S. Gerdjikov and A. B. Yanovski, Completeness of the eigenfunctions for the Caudrey–Beals–Coifman system, J. Math. Phys., 35 (1994), 3687-3725.  doi: 10.1063/1.530441.  Google Scholar

[28]

V. S. Gerdjikov and A. B. Yanovski, Riemann-Hilbert Problems, families of commuting operators and soliton equations, Journal of Physics: Conference Series, 482 (2014), 012017. doi: 10.1088/1742-6596/482/1/012017.  Google Scholar

[29]

V. S. Gerdjikov and A. B. Yanovski, On soliton equations with $\mathbb{Z}_{ {h}}$ and $\mathbb{D}_{ {h}}$ reductions: conservation laws and generating operators, J. Geom. Symmetry Phys., 31 (2013), 57-92.  doi: 10.7546/jgsp-31-2013-57-92.  Google Scholar

[30]

V. S. Gerdjikov and A. B. Yanovski, CBC systems with Mikhailov reductions by Coxeter automorphism. Ⅰ. Spectral theory of the recursion operators, Studies in Applied Mathematics, 134 (2015), 145-180.  doi: 10.1111/sapm.12065.  Google Scholar

[31]

M. GürsesA. Karasu and V. V. Sokolov, On construction of recursion operators from Lax representation, Journal of Mathematical Physics, 40 (1999), 6473-6490.  doi: 10.1063/1.533102.  Google Scholar

[32]

J. Haberlin and T. Lyons, Solitons of shallow-water models from energy-dependent spectral problems, Eur. Phys. J. Plus, 133 (2018), 16, arXiv: 1705.04989 [math-ph] doi: 10.1140/epjp/i2018-11848-8.  Google Scholar

[33] S. Helgasson, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York-London, 1978.   Google Scholar
[34]

D. D. Holm, Geometric Mechanics Part I: Dynamics and Symmetry, Imperial College Press: London, 2011. doi: 10.1142/p801.  Google Scholar

[35]

D. D. Holm, Geometric Mechanics Part II: Rotating, Translating and Rolling, Imperial College Press: London, 2011. doi: 10.1142/p802.  Google Scholar

[36]

D. Holm and R. Ivanov, Smooth and peaked solitons of the CH equation, J. Phys. A: Math. Theor., 43 (2010), 434003 (18pp). doi: 10.1088/1751-8113/43/43/434003.  Google Scholar

[37]

D. Holm and R. Ivanov, Two-component CH system: Inverse scattering, peakons and geometry, Inverse Problems, 27 (2011), 045013, 19pp, arXiv: 1009.5374v1 [nlin.SI] doi: 10.1088/0266-5611/27/4/045013.  Google Scholar

[38]

R. Ivanov, On the dressing method for the generalised Zakharov-Shabat system, Nuclear Physics B, 694 (2004), 509–524; math-ph/0402031. doi: 10.1016/j.nuclphysb.2004.06.039.  Google Scholar

[39]

R. Ivanov and T. Lyons, Integrable models for shallow water with energy dependent spectral problems, Journal of Nonlinear Mathematical Physics, 19 (2012), 1240008 (17 pages). doi: 10.1142/S1402925112400086.  Google Scholar

[40]

D. J. Kaup, The three-wave interaction - a nondispersive phenomenon, Stud. Appl. Math., 55 (1976), 9-44.  doi: 10.1002/sapm19765519.  Google Scholar

[41]

D. J. Kaup, On the inverse scattering problem for cubic eigenvalue problems of the class $\psi_{xxx}+6Q\psi_{x}+6R\psi = \lambda \psi $, Stud. Appl. Math., 62 (1980), 189-216.  doi: 10.1002/sapm1980623189.  Google Scholar

[42]

V. KnibbelerS. Lombardo and J. A. Sanders, Higher-Dimensional Automorphic Lie Algebras, Found. Comput. Math., 17 (2017), 987-1035.  doi: 10.1007/s10208-016-9312-1.  Google Scholar

[43]

S. Lombardo and A. V. Mikhailov, Reductions of integrable equations: Dihedral group, J. Phys. A, 37 (2004), 7727–7742; arXiv: nlin/0404013 [nlin.SI] doi: 10.1088/0305-4470/37/31/006.  Google Scholar

[44]

S. Lombardo and A.V. Mikhailov, Reduction groups and Automorphic Lie Algebras, Communication in Mathematical Physics, 258 (2005), 179-202.  doi: 10.1007/s00220-005-1334-5.  Google Scholar

[45]

S. Lombardo and J. Sanders, On the classification of automorphic Lie algebras, Communications in Mathematical Physics, 299 (2010), 793–824; arXiv: 0912.1697 [math.RA]. doi: 10.1007/s00220-010-1092-x.  Google Scholar

[46]

S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov. Phys. JETP, 38 (1974), 248. Google Scholar

[47]

S. V. Manakov and V. E. Zakharov, Soliton theory, in: Physics Review, Vol. Ⅰ, Ⅰ. M. Khalatnikov (ed.), London, (1979), 133–190. Google Scholar

[48]

A. V. Mikhailov, The reduction problem and the inverse scattering problem, Physica D, 3 (1981), 73-117.  doi: 10.1016/0167-2789(81)90120-2.  Google Scholar

[49]

A. V. MikhailovM. A. Olshanetsky and and A. M. Perelomov, Two-dimensional generalized Toda lattice, Comm. Math. Phys., 79 (1981), 473-488.  doi: 10.1007/BF01209308.  Google Scholar

[50]

A. V. MikhailovA. B. Shabat and R. I. Yamilov, The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems, Russian Math. Surveys, 42 (1987), 1-63.  doi: 10.1070/RM1987v042n04ABEH001441.  Google Scholar

[51]

A. V. MikhailovA. B. Shabat and R. I. Yamilov, Extension of the module of invertible transformations. classification of integrable systems, Commun. Math. Phys., 115 (1988), 1-19.  doi: 10.1007/BF01238850.  Google Scholar

[52]

A. V. Mikhailov, A. B. Shabat and V. V. Sokolov, The symmetry approach to classification of integrable equations, In: Zakharov V.E. (eds) What Is Integrability?, 115–184, Springer Series in Nonlinear Dynamics. Springer, Berlin, 1991.  Google Scholar

[53]

A. V. Mikhailov and V. E. Zakharov, On the integrability of classical spinor models in two-dimensional space–time, Commun. Math. Phys., 74 (1980), 21-40.  doi: 10.1007/BF01197576.  Google Scholar

[54]

S. Novikov, S. Manakov, L. Pitaevskii and V. Zakharov, Theory of Solitons: The Inverse Scattering Method, Plenum, Consultants Bureau, New York, 1984.  Google Scholar

[55]

A. B. Shabat, Inverse scattering problem for a system of differential equations, Funct. Anal. Appl., 9 (1975), 244-247.  doi: 10.1007/BF01075603.  Google Scholar

[56]

A. B. Shabat, A one-dimensional scattering theory. Ⅰ, Differ. Uravn., 8 (1972), 164–178 (In Russian).  Google Scholar

[57]

V. V. Sokolov and T. Wolf, Classification of integrable polynomial vector evolution equations, J. Phys. A: Math. Gen., 34 (2001), 11139-11148.  doi: 10.1088/0305-4470/34/49/327.  Google Scholar

[58]

T. I. Valchev, On certain reductions of integrable equations on symmetric spaces, AIP Conference Proceedings, 1340 (2011), 154-164.  doi: 10.1063/1.3567134.  Google Scholar

[59]

A. B. Yanovski and T. I. Valchev, Pseudo-Hermitian reduction of a generalized Heisenberg ferromagnet equation. Ⅰ. Auxiliary system and fundamental properties;, Journal of Nonlinear Mathematical Physics, 25 (2018), 324-350.  doi: 10.1080/14029251.2018.1452676.  Google Scholar

[60]

V. E. Zakharov and S. V. Manakov, On the theory of resonance interactions of wave packets in nonlinear media, Zh. Exp. Teor. Fiz., 69 (1975), 1654-1673.   Google Scholar

[61]

V. E. Zakharov and A. B. Shabat, A scheme for integrating nonlinear evolution equations of mathematical physics by the inverse scattering problem. Ⅰ, Funct. Anal. Appl., 8 (1974), 226-235.  doi: 10.1007/BF01075696.  Google Scholar

[62]

V. E. Zakharov and A. B. Shabat, Integration of nonlinear equations of mathematical physics by the method of inverse scattering Ⅱ., Funct. Anal. Appl., 13 (1979), 166-174.  doi: 10.1007/BF01077483.  Google Scholar

[63]

V. E. Zakharov, Exact solutions of the problem of parametric interaction of wave packets, Dokl. Akad. Nauk SSSR, 228 (1976), 1314-1316.   Google Scholar

[64]

V. E. Zakharov, The inverse scattering method, In: Solitons, R. K. Bullough and P. J. Caudrey (editors), Springer-Verlag, Berlin, (1980), 243–286. Google Scholar

[65]

V. E. Zakharov, Integrable systems in multidimensional spaces, in Mathematical Problems in Theoretical Physics, Lecture Notes in Phys., 153, Springer-Verlag, Berlin, (1982), 190–216. doi: 10.1007/3-540-11192-1_38.  Google Scholar

Figure 1.  Contour of a RHP with $ \mathbb{Z}_3 $ symmetry
Figure 2.  Contour of the RHP $ \mathbb{D}_3 $ symmetry
Figure 3.  Contour of the RHP for $ \mathbb{D}_2 $ symmetry (upper panel) and for $ \mathbb{D}_4 $ symmetry (lower panel)
[1]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[2]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026

[3]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, 2021, 15 (3) : 499-517. doi: 10.3934/ipi.2021002

[4]

Yusi Fan, Chenrui Yao, Liangyun Chen. Structure of sympathetic Lie superalgebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021020

[5]

Stephen Doty and Anthony Giaquinto. Generators and relations for Schur algebras. Electronic Research Announcements, 2001, 7: 54-62.

[6]

Fatemeh Abtahi, Zeinab Kamali, Maryam Toutounchi. The BSE concepts for vector-valued Lipschitz algebras. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1171-1186. doi: 10.3934/cpaa.2021011

[7]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[8]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[9]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[10]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[11]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[12]

Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025

[13]

Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks & Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008

[14]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[15]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[16]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, 2021, 15 (3) : 415-443. doi: 10.3934/ipi.2020074

[17]

Caichun Chai, Tiaojun Xiao, Zhangwei Feng. Evolution of revenue preference for competing firms with nonlinear inverse demand. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021071

[18]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[19]

Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3817-3836. doi: 10.3934/dcds.2021018

[20]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (134)
  • HTML views (262)
  • Cited by (2)

[Back to Top]