
-
Previous Article
Dual pairs and regularization of Kummer shapes in resonances
- JGM Home
- This Issue
-
Next Article
Conservation laws in discrete geometry
Embedding Camassa-Holm equations in incompressible Euler
1. | INRIA, Paris, 2 Rue Simone Iff, 75012 Paris, France |
2. | Université Paris-Est Marne-la-Vallée, 5 Boulevard Descartes, 77420 Champs-sur-Marne, France |
Recently, Gallouët and Vialard [
References:
[1] |
V. Arnold,
Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16 (1966), 319-361.
doi: 10.5802/aif.233. |
[2] |
R. Bishop and B. O'Neill,
Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49.
doi: 10.1090/S0002-9947-1969-0251664-4. |
[3] |
R. Camassa and D. D. Holm,
An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[4] |
A. Constantin and B. Kolev,
Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., 78 (2003), 787-804.
doi: 10.1007/s00014-003-0785-6. |
[5] |
A. Constantin and J. Escher,
Wave breaking for nonlinear nonlocal shallow water equations, Acta Mathematica, 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[6] |
A. Constantin and D. Lannes,
The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations, Archive for Rational Mechanics and Analysis, 192 (2009), 165-186.
doi: 10.1007/s00205-008-0128-2. |
[7] |
H. H. Dai,
Model equations for nonlinear dispersive waves in a compressible mooney-rivlin rod, Acta Mechanica, 127 (1998), 193-207.
doi: 10.1007/BF01170373. |
[8] |
D. G. Ebin and J. Marsden,
Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. (2), 92 (1970), 102-163.
doi: 10.2307/1970699. |
[9] |
L. P. Eisenhart,
Dynamical trajectories and geodesics, Annals of Mathematics, 30 (1928), 591-606.
doi: 10.2307/1968307. |
[10] |
M. Fisher and J. Schiff,
The Camassa Holm equation: Conserved quantities and the initial value problem, Physics Letters A, 259 (1999), 371-376.
doi: 10.1016/S0375-9601(99)00466-1. |
[11] |
T. Gallouët and F.-X. Vialard, The Camassa–Holm equation as an incompressible Euler equation: A geometric point of view, Journal of Differential Equations, 264 (2018), 4199–4234, URL http://www.sciencedirect.com/science/article/pii/S0022039617306435.
doi: 10.1016/j.jde.2017.12.008. |
[12] |
D. D. Holm, J. E. Marsden and T. S. Ratiu,
The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81.
doi: 10.1006/aima.1998.1721. |
[13] |
D. D. Holm and J. E. Marsden, Momentum maps and measure-valued solutions (peakons, filaments, and sheets) for the EPDiff equation, in The Breadth of Symplectic and Poisson Geometry, Springer, 232 (2005), 203–235.
doi: 10.1007/0-8176-4419-9_8. |
[14] |
D. D. Holm and M. F. Staley,
Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1+1 nonlinear evolutionary PDE, Physics Letters A, 308 (2003), 437-444.
doi: 10.1016/S0375-9601(03)00114-2. |
[15] |
B. Khesin, J. Lenells, G. Misiolek and S. C. Preston,
Geometry of diffeomorphism groups, complete integrability and geometric statistics, Geom. Funct. Anal., 23 (2013), 334-366.
doi: 10.1007/s00039-013-0210-2. |
[16] |
B. Khesin, G. Misiolek and K. Modin,
Geometric hydrodynamics via Madelung transform, Proc. Natl. Acad. Sci. USA, 115 (2018), 6165-6170.
doi: 10.1073/pnas.1719346115. |
[17] |
M. Kohlmann, The two-dimensional periodic b-equation on the diffeomorphism group of the torus, Journal of Physics A: Mathematical and Theoretical, 44 (2011), 465205, 17pp.
doi: 10.1088/1751-8113/44/46/465205. |
[18] |
S. Kouranbaeva,
The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys., 40 (1999), 857-868.
doi: 10.1063/1.532690. |
[19] |
P. W. Michor and D. Mumford,
Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms, Doc. Math., 10 (2005), 217-245.
|
[20] |
P. W. Michor and D. Mumford,
On Euler's equation and 'EPDiff', J. Geom. Mech., 5 (2013), 319-344.
doi: 10.3934/jgm.2013.5.319. |
[21] |
L. Molinet,
On well-posedness results for Camassa-Holm equation on the line: A survey, Journal of Nonlinear Mathematical Physics, 11 (2004), 521-533.
doi: 10.2991/jnmp.2004.11.4.8. |
[22] |
S. C. Preston,
The geometry of barotropic flow, Journal of Mathematical Fluid Mechanics, 15 (2013), 807-821.
doi: 10.1007/s00021-013-0142-5. |
[23] |
T. Tao,
On the universality of the incompressible Euler equation on compact manifolds, Discrete Contin. Dyn. Syst., 38 (2018), 1553-1565.
doi: 10.3934/dcds.2018064. |
[24] |
T. Tao, Embedding the Boussinesq equations in the incompressible Euler equations on a manifold, https://terrytao.wordpress.com/2017/12/14/embedding-the-boussinesq-equations-in-the-incompressible-euler-equations-on-a-manifold/, 2017. |
show all references
References:
[1] |
V. Arnold,
Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16 (1966), 319-361.
doi: 10.5802/aif.233. |
[2] |
R. Bishop and B. O'Neill,
Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49.
doi: 10.1090/S0002-9947-1969-0251664-4. |
[3] |
R. Camassa and D. D. Holm,
An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[4] |
A. Constantin and B. Kolev,
Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., 78 (2003), 787-804.
doi: 10.1007/s00014-003-0785-6. |
[5] |
A. Constantin and J. Escher,
Wave breaking for nonlinear nonlocal shallow water equations, Acta Mathematica, 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[6] |
A. Constantin and D. Lannes,
The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations, Archive for Rational Mechanics and Analysis, 192 (2009), 165-186.
doi: 10.1007/s00205-008-0128-2. |
[7] |
H. H. Dai,
Model equations for nonlinear dispersive waves in a compressible mooney-rivlin rod, Acta Mechanica, 127 (1998), 193-207.
doi: 10.1007/BF01170373. |
[8] |
D. G. Ebin and J. Marsden,
Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. (2), 92 (1970), 102-163.
doi: 10.2307/1970699. |
[9] |
L. P. Eisenhart,
Dynamical trajectories and geodesics, Annals of Mathematics, 30 (1928), 591-606.
doi: 10.2307/1968307. |
[10] |
M. Fisher and J. Schiff,
The Camassa Holm equation: Conserved quantities and the initial value problem, Physics Letters A, 259 (1999), 371-376.
doi: 10.1016/S0375-9601(99)00466-1. |
[11] |
T. Gallouët and F.-X. Vialard, The Camassa–Holm equation as an incompressible Euler equation: A geometric point of view, Journal of Differential Equations, 264 (2018), 4199–4234, URL http://www.sciencedirect.com/science/article/pii/S0022039617306435.
doi: 10.1016/j.jde.2017.12.008. |
[12] |
D. D. Holm, J. E. Marsden and T. S. Ratiu,
The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81.
doi: 10.1006/aima.1998.1721. |
[13] |
D. D. Holm and J. E. Marsden, Momentum maps and measure-valued solutions (peakons, filaments, and sheets) for the EPDiff equation, in The Breadth of Symplectic and Poisson Geometry, Springer, 232 (2005), 203–235.
doi: 10.1007/0-8176-4419-9_8. |
[14] |
D. D. Holm and M. F. Staley,
Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1+1 nonlinear evolutionary PDE, Physics Letters A, 308 (2003), 437-444.
doi: 10.1016/S0375-9601(03)00114-2. |
[15] |
B. Khesin, J. Lenells, G. Misiolek and S. C. Preston,
Geometry of diffeomorphism groups, complete integrability and geometric statistics, Geom. Funct. Anal., 23 (2013), 334-366.
doi: 10.1007/s00039-013-0210-2. |
[16] |
B. Khesin, G. Misiolek and K. Modin,
Geometric hydrodynamics via Madelung transform, Proc. Natl. Acad. Sci. USA, 115 (2018), 6165-6170.
doi: 10.1073/pnas.1719346115. |
[17] |
M. Kohlmann, The two-dimensional periodic b-equation on the diffeomorphism group of the torus, Journal of Physics A: Mathematical and Theoretical, 44 (2011), 465205, 17pp.
doi: 10.1088/1751-8113/44/46/465205. |
[18] |
S. Kouranbaeva,
The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys., 40 (1999), 857-868.
doi: 10.1063/1.532690. |
[19] |
P. W. Michor and D. Mumford,
Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms, Doc. Math., 10 (2005), 217-245.
|
[20] |
P. W. Michor and D. Mumford,
On Euler's equation and 'EPDiff', J. Geom. Mech., 5 (2013), 319-344.
doi: 10.3934/jgm.2013.5.319. |
[21] |
L. Molinet,
On well-posedness results for Camassa-Holm equation on the line: A survey, Journal of Nonlinear Mathematical Physics, 11 (2004), 521-533.
doi: 10.2991/jnmp.2004.11.4.8. |
[22] |
S. C. Preston,
The geometry of barotropic flow, Journal of Mathematical Fluid Mechanics, 15 (2013), 807-821.
doi: 10.1007/s00021-013-0142-5. |
[23] |
T. Tao,
On the universality of the incompressible Euler equation on compact manifolds, Discrete Contin. Dyn. Syst., 38 (2018), 1553-1565.
doi: 10.3934/dcds.2018064. |
[24] |
T. Tao, Embedding the Boussinesq equations in the incompressible Euler equations on a manifold, https://terrytao.wordpress.com/2017/12/14/embedding-the-boussinesq-equations-in-the-incompressible-euler-equations-on-a-manifold/, 2017. |


[1] |
V. Afraimovich, J. Schmeling, Edgardo Ugalde, Jesús Urías. Spectra of dimensions for Poincaré recurrences. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 901-914. doi: 10.3934/dcds.2000.6.901 |
[2] |
B. Fernandez, E. Ugalde, J. Urías. Spectrum of dimensions for Poincaré recurrences of Markov maps. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 835-849. doi: 10.3934/dcds.2002.8.835 |
[3] |
Juan Wang, Xiaodan Zhang, Yun Zhao. Dimension estimates for arbitrary subsets of limit sets of a Markov construction and related multifractal analysis. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2315-2332. doi: 10.3934/dcds.2014.34.2315 |
[4] |
Godofredo Iommi, Bartłomiej Skorulski. Multifractal analysis for the exponential family. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 857-869. doi: 10.3934/dcds.2006.16.857 |
[5] |
V. Afraimovich, Jean-René Chazottes, Benoît Saussol. Pointwise dimensions for Poincaré recurrences associated with maps and special flows. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 263-280. doi: 10.3934/dcds.2003.9.263 |
[6] |
Julien Barral, Yan-Hui Qu. On the higher-dimensional multifractal analysis. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 1977-1995. doi: 10.3934/dcds.2012.32.1977 |
[7] |
Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627 |
[8] |
Zhihui Yuan. Multifractal analysis of random weak Gibbs measures. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5367-5405. doi: 10.3934/dcds.2017234 |
[9] |
Luis Barreira. Dimension theory of flows: A survey. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3345-3362. doi: 10.3934/dcdsb.2015.20.3345 |
[10] |
Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469 |
[11] |
Valentin Afraimovich, Jean-Rene Chazottes and Benoit Saussol. Local dimensions for Poincare recurrences. Electronic Research Announcements, 2000, 6: 64-74. |
[12] |
Yunping Wang, Ercai Chen, Xiaoyao Zhou. Mean dimension theory in symbolic dynamics for finitely generated amenable groups. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022050 |
[13] |
Zied Douzi, Bilel Selmi. On the mutual singularity of multifractal measures. Electronic Research Archive, 2020, 28 (1) : 423-432. doi: 10.3934/era.2020024 |
[14] |
Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295 |
[15] |
Jean-Pierre Francoise, Claude Piquet. Global recurrences of multi-time scaled systems. Conference Publications, 2011, 2011 (Special) : 430-436. doi: 10.3934/proc.2011.2011.430 |
[16] |
Balázs Bárány, Michaƚ Rams, Ruxi Shi. On the multifractal spectrum of weighted Birkhoff averages. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2461-2497. doi: 10.3934/dcds.2021199 |
[17] |
Jerrold E. Marsden, Alexey Tret'yakov. Factor analysis of nonlinear mappings: p-regularity theory. Communications on Pure and Applied Analysis, 2003, 2 (4) : 425-445. doi: 10.3934/cpaa.2003.2.425 |
[18] |
Lars Olsen. First return times: multifractal spectra and divergence points. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 635-656. doi: 10.3934/dcds.2004.10.635 |
[19] |
Imen Bhouri, Houssem Tlili. On the multifractal formalism for Bernoulli products of invertible matrices. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1129-1145. doi: 10.3934/dcds.2009.24.1129 |
[20] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
2020 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]