We present an account of dual pairs and the Kummer shapes for $ n:m $ resonances that provides an alternative to Holm and Vizman's work. The advantages of our point of view are that the associated Poisson structure on $ \mathfrak{su}(2)^{*} $ is the standard $ (+) $-Lie-Poisson bracket independent of the values of $ (n,m) $ as well as that the Kummer shape is regularized to become a sphere without any pinches regardless of the values of $ (n,m) $. A similar result holds for $ n:-m $ resonance with a paraboloid and $ \mathfrak{su}(1,1)^{*} $. The result also has a straightforward generalization to multidimensional resonances as well.
Citation: |
[1] |
J. F. Cariñena, A. Ibort, G. Marmo and G. Morandi, Geometry from Dynamics, Classical and Quantum, Springer, 2014.
![]() |
[2] |
R. C. Churchill, M. Kummer and D. L. Rod, On averaging, reduction, and symmetry in Hamiltonian systems, Journal of Differential Equations, 49 (1983), 359-414.
doi: 10.1016/0022-0396(83)90003-7.![]() ![]() ![]() |
[3] |
H. Dullin, A. Giacobbe and R. Cushman, Monodromy in the resonant swing spring, Physica D: Nonlinear Phenomena, 190 (2004), 15-37.
doi: 10.1016/j.physd.2003.10.004.![]() ![]() ![]() |
[4] |
M. Gell-Mann, Symmetries of baryons and mesons, Physical Review, 125 (1962), 1067-1084.
doi: 10.1103/PhysRev.125.1067.![]() ![]() ![]() |
[5] |
M. Golubitsky, I. Stewart and J. E. Marsden, Generic bifurcation of Hamiltonian systems with symmetry, Physica D: Nonlinear Phenomena, 24 (1987), 391-405.
doi: 10.1016/0167-2789(87)90087-X.![]() ![]() ![]() |
[6] |
G. Haller, Chaos Near Resonance, Applied Mathematical Sciences. Springer, New York, 1999.
doi: 10.1007/978-1-4612-1508-0.![]() ![]() ![]() |
[7] |
D. D. Holm, Geometric Mechanics, Part Ⅰ: Dynamics and Symmetry, Imperial College Press, 2nd edition, 2011.
![]() ![]() |
[8] |
D. D. Holm and C. Vizman, Dual pairs in resonances, Journal of Geometric Mechanics, 4 (2012), 297-311.
doi: 10.3934/jgm.2012.4.297.![]() ![]() ![]() |
[9] |
T. Iwai, On reduction of two degrees of freedom Hamiltonian systems by an $S^1$ action, and $SO_0(1, 2)$ as a dynamical group, Journal of Mathematical Physics, 26 (1985), 885-893.
doi: 10.1063/1.526544.![]() ![]() ![]() |
[10] |
A. A. Kirillov, Lectures on the Orbit Method, Graduate Studies in Mathematics. American Mathematical Society, 2004.
doi: 10.1090/gsm/064.![]() ![]() ![]() |
[11] |
M. Kummer, On the construction of the reduced phase space of a Hamiltonian system with symmetry, Indiana Univ. Math. J., 30 (1981), 281-291.
doi: 10.1512/iumj.1981.30.30022.![]() ![]() ![]() |
[12] |
M. Kummer, Lecture 1: On resonant Hamiltonian systems with finitely many degrees of freedom, Local and Global Methods of Nonlinear Dynamics (Silver Spring, Md., 1984), 19-31, Lecture Notes in Phys., 252, Springer, Berlin, 1986.
doi: 10.1007/BFb0018325.![]() ![]() ![]() |
[13] |
M. Kummer, On resonant Hamiltonians with $n$ frequencies, The Physics of Phase Space (College Park, Md., 1986), 63-65, Lecture Notes in Phys., 278, Springer, Berlin, 1987.
doi: 10.1007/3-540-17894-5_321.![]() ![]() ![]() |
[14] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Springer, 1999.
doi: 10.1007/978-0-387-21792-5.![]() ![]() ![]() |
[15] |
J. P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction, volume 222 of Progress in Mathematics., Birkhäuser, 2004.
doi: 10.1007/978-1-4757-3811-7.![]() ![]() ![]() |
[16] |
A. Weinstein, The local structure of Poisson manifolds, Journal of Differential Geometry, 18 (1983), 523-557.
doi: 10.4310/jdg/1214437787.![]() ![]() ![]() |
The Kummer shape is regularized to be the sphere (green), and the reduced dynamics (red) (11) is at the intersection of the sphere and the level set (blue) of the Hamiltonian