June  2019, 11(2): 239-254. doi: 10.3934/jgm.2019013

Dispersive Lamb systems

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

* Corresponding author: Peter J. Olver

Received  October 2017 Revised  March 2018 Published  May 2019

Under periodic boundary conditions, a one-dimensional dispersive medium driven by a Lamb oscillator exhibits a smooth response when the dispersion relation is asymptotically linear or superlinear at large wave numbers, but unusual fractal solution profiles emerge when the dispersion relation is asymptotically sublinear. Strikingly, this is exactly the opposite of the superlinear asymptotic regime required for fractalization and dispersive quantization, also known as the Talbot effect, of the unforced medium induced by discontinuous initial conditions.

Citation: Peter J. Olver, Natalie E. Sheils. Dispersive Lamb systems. Journal of Geometric Mechanics, 2019, 11 (2) : 239-254. doi: 10.3934/jgm.2019013
References:
[1]

M. V. BerryI. Marzoli and W. Schleich, Quantum carpets, carpets of light, Physics World, 14 (2001), 39-44.   Google Scholar

[2]

G. Chen and P. J. Olver, Dispersion of discontinuous periodic waves, Proc. Roy. Soc. London, 469 (2012), 20120407, 21pp. doi: 10.1098/rspa.2012.0407.  Google Scholar

[3]

V. ChousionisM. B. Erdoğan and N. Tzirakis, Fractal solutions of linear and nonlinear dispersive partial differential equations, Proc. London Math. Soc., 110 (2015), 543-564.  doi: 10.1112/plms/pdu061.  Google Scholar

[4]

B. Deconinck, Q. Guo, E. Shlizerman and V. Vasan, Fokas's uniform transform method for linear systems, Quart. Appl. Math., 76 (2018), 463-488, arXiv 1705.00358. doi: 10.1090/qam/1484.  Google Scholar

[5]

B. Deconinck, B. Pelloni and N. E. Sheils, Non-steady state heat conduction in composite walls, Proc. Roy. Soc. London A, 470 (2014), 20130605. Google Scholar

[6]

J. J. Duistermaat, Self-similarity of ``Riemann's nondifferentiable function'', Nieuw Arch. Wisk., 9 (1991), 303-337.   Google Scholar

[7]

M. B. Erdoğan, personal communication, 2018. Google Scholar

[8]

M. B. Erdoğan and G. Shakan, Fractal solutions of dispersive partial differential equations on the torus, Selecta Math., 25 (2019), 11. doi: 10.1007/s00029-019-0455-1.  Google Scholar

[9]

M. B. Erdoğan and N. Tzirakis, Talbot effect for the cubic nonlinear Schrödinger equation on the torus, Math. Res. Lett., 20 (2013), 1081-1090.  doi: 10.4310/MRL.2013.v20.n6.a7.  Google Scholar

[10] M. B. Erdoğan and N. Tzirakis, Dispersive Partial Differential Equations: Wellposedness and Applications, London Math. Soc. Student Texts, vol. 86, Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316563267.  Google Scholar
[11]

A. S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London A, 453 (1997), 1411-1443.  doi: 10.1098/rspa.1997.0077.  Google Scholar

[12]

A. S. Fokas, A Unified Approach to Boundary Value Problems, CBMS-NSF Conference Series in Applied Math., vol. 78, SIAM, Philadelphia, 2008. doi: 10.1137/1.9780898717068.  Google Scholar

[13]

P. HagertyA. M. Bloch and M. I. Weinstein, Radiation induced instability, Siam J. Appl. Math., 64 (2003), 484-524.  doi: 10.1137/S0036139902418717.  Google Scholar

[14]

I. A. Kunin, Elastic Media with Microstructure I, , Springer-Verlag, New York, 1982.  Google Scholar

[15]

G. L. Lamb, On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium, Proc. London Math. Soc., 32 (1900), 208-211.  doi: 10.1112/plms/s1-32.1.208.  Google Scholar

[16]

P. J. Olver, Dispersive quantization, Amer. Math. Monthly, 117 (2010), 599-610.  doi: 10.4169/000298910x496723.  Google Scholar

[17]

P. J. Olver, Introduction to Partial Differential Equations, Undergraduate Texts in Mathematics, Springer, New York, 2014. doi: 10.1007/978-3-319-02099-0.  Google Scholar

[18]

K. I. Oskolkov, A class of I.M. Vinogradov's series and its applications in harmonic analysis, Progress in Approximation Theory, Springer Ser. Comput. Math., 19, Springer, New York, 1992,353-402. doi: 10.1007/978-1-4612-2966-7_16.  Google Scholar

[19]

A. C. Scott, Soliton oscillations in DNA, Phys. Rev. A, 31 (1985), 3518-3519.  doi: 10.1103/PhysRevA.31.3518.  Google Scholar

[20]

N. E. Sheils and B. Deconinck, Heat conduction on the ring: interface problems with periodic boundary conditions, Appl. Math. Lett., 37 (2014), 107-111.  doi: 10.1016/j.aml.2014.06.006.  Google Scholar

[21]

H. F. Talbot, Facts related to optical science. No. Ⅳ, Philos. Mag., 9 (1836), 401-407.   Google Scholar

[22]

H. F. Weinberger, A First Course in Partial Differential Equations, Dover Publ., New York, 1995. Google Scholar

[23]

G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, New York, 1974.  Google Scholar

show all references

References:
[1]

M. V. BerryI. Marzoli and W. Schleich, Quantum carpets, carpets of light, Physics World, 14 (2001), 39-44.   Google Scholar

[2]

G. Chen and P. J. Olver, Dispersion of discontinuous periodic waves, Proc. Roy. Soc. London, 469 (2012), 20120407, 21pp. doi: 10.1098/rspa.2012.0407.  Google Scholar

[3]

V. ChousionisM. B. Erdoğan and N. Tzirakis, Fractal solutions of linear and nonlinear dispersive partial differential equations, Proc. London Math. Soc., 110 (2015), 543-564.  doi: 10.1112/plms/pdu061.  Google Scholar

[4]

B. Deconinck, Q. Guo, E. Shlizerman and V. Vasan, Fokas's uniform transform method for linear systems, Quart. Appl. Math., 76 (2018), 463-488, arXiv 1705.00358. doi: 10.1090/qam/1484.  Google Scholar

[5]

B. Deconinck, B. Pelloni and N. E. Sheils, Non-steady state heat conduction in composite walls, Proc. Roy. Soc. London A, 470 (2014), 20130605. Google Scholar

[6]

J. J. Duistermaat, Self-similarity of ``Riemann's nondifferentiable function'', Nieuw Arch. Wisk., 9 (1991), 303-337.   Google Scholar

[7]

M. B. Erdoğan, personal communication, 2018. Google Scholar

[8]

M. B. Erdoğan and G. Shakan, Fractal solutions of dispersive partial differential equations on the torus, Selecta Math., 25 (2019), 11. doi: 10.1007/s00029-019-0455-1.  Google Scholar

[9]

M. B. Erdoğan and N. Tzirakis, Talbot effect for the cubic nonlinear Schrödinger equation on the torus, Math. Res. Lett., 20 (2013), 1081-1090.  doi: 10.4310/MRL.2013.v20.n6.a7.  Google Scholar

[10] M. B. Erdoğan and N. Tzirakis, Dispersive Partial Differential Equations: Wellposedness and Applications, London Math. Soc. Student Texts, vol. 86, Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316563267.  Google Scholar
[11]

A. S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London A, 453 (1997), 1411-1443.  doi: 10.1098/rspa.1997.0077.  Google Scholar

[12]

A. S. Fokas, A Unified Approach to Boundary Value Problems, CBMS-NSF Conference Series in Applied Math., vol. 78, SIAM, Philadelphia, 2008. doi: 10.1137/1.9780898717068.  Google Scholar

[13]

P. HagertyA. M. Bloch and M. I. Weinstein, Radiation induced instability, Siam J. Appl. Math., 64 (2003), 484-524.  doi: 10.1137/S0036139902418717.  Google Scholar

[14]

I. A. Kunin, Elastic Media with Microstructure I, , Springer-Verlag, New York, 1982.  Google Scholar

[15]

G. L. Lamb, On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium, Proc. London Math. Soc., 32 (1900), 208-211.  doi: 10.1112/plms/s1-32.1.208.  Google Scholar

[16]

P. J. Olver, Dispersive quantization, Amer. Math. Monthly, 117 (2010), 599-610.  doi: 10.4169/000298910x496723.  Google Scholar

[17]

P. J. Olver, Introduction to Partial Differential Equations, Undergraduate Texts in Mathematics, Springer, New York, 2014. doi: 10.1007/978-3-319-02099-0.  Google Scholar

[18]

K. I. Oskolkov, A class of I.M. Vinogradov's series and its applications in harmonic analysis, Progress in Approximation Theory, Springer Ser. Comput. Math., 19, Springer, New York, 1992,353-402. doi: 10.1007/978-1-4612-2966-7_16.  Google Scholar

[19]

A. C. Scott, Soliton oscillations in DNA, Phys. Rev. A, 31 (1985), 3518-3519.  doi: 10.1103/PhysRevA.31.3518.  Google Scholar

[20]

N. E. Sheils and B. Deconinck, Heat conduction on the ring: interface problems with periodic boundary conditions, Appl. Math. Lett., 37 (2014), 107-111.  doi: 10.1016/j.aml.2014.06.006.  Google Scholar

[21]

H. F. Talbot, Facts related to optical science. No. Ⅳ, Philos. Mag., 9 (1836), 401-407.   Google Scholar

[22]

H. F. Weinberger, A First Course in Partial Differential Equations, Dover Publ., New York, 1995. Google Scholar

[23]

G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, New York, 1974.  Google Scholar

Figure 1.  The Lamb Oscillator on the Line.
Figure 2.  The Lamb Oscillator on the Line at Large Time.
Figure 3.  The Periodic Lamb Oscillator.
Figure 4.  The Dispersive Periodic Lamb Oscillator with $ \omega (k) = k^2 $.
Figure 5.  The Dispersive Periodic Lamb Oscillator for the Klein-Gordon Model.
Figure 6.  The Dispersive Periodic Lamb Oscillator with $ \omega(k) = \sqrt{\left| k \right|} $.
Figure 7.  The Dispersive Periodic Lamb Oscillator for the Regularized Boussinesq Model.
Figure 8.  The Unidirectional Periodic Lamb Oscillator for the Transport Model.
Figure 9.  The Unidirectional Dispersive Periodic Lamb Oscillator for $ \omega(k) = {k^2} $.
Figure 10.  The Unidirectional Dispersive Periodic Lamb Oscillator for $ \omega(k) = \sqrt{k} $.
Figure 11.  The Unidirectional Dispersive Periodic Lamb Oscillator for $ \omega(k)=k^{2} /\left(1+\frac{1}{3} k^{2}\right) $
[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[3]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[4]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[5]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[6]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[7]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[8]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[9]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[10]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[11]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[12]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[13]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[14]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[15]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[16]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[17]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[18]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[19]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[20]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (104)
  • HTML views (248)
  • Cited by (0)

Other articles
by authors

[Back to Top]