September  2019, 11(3): 427-438. doi: 10.3934/jgm.2019021

Relative periodic solutions of the $ n $-vortex problem on the sphere

Depto. Matemáticas y Mecánica IIMAS, Universidad Nacional Autónoma de México, Apdo. Postal 20-726, 01000 Ciudad de México, México

Received  September 2018 Revised  April 2019 Published  August 2019

Fund Project: This project is supported by PAPIIT-UNAM grant IN115019.

This paper gives an analysis of the movement of $ n\ $vortices on the sphere. When the vortices have equal circulation, there is a polygonal solution that rotates uniformly around its center. The main result concerns the global existence of relative periodic solutions that emerge from this polygonal relative equilibrium. In addition, it is proved that the families of relative periodic solutions contain dense sets of choreographies.

Citation: Carlos García-Azpeitia. Relative periodic solutions of the $ n $-vortex problem on the sphere. Journal of Geometric Mechanics, 2019, 11 (3) : 427-438. doi: 10.3934/jgm.2019021
References:
[1]

Z. Balanov, W. Krawcewicz and H. Steinlein, Applied Equivariant Degree, AIMS Series on Differential Equations & Dynamical Systems, 1. American Institute of Mathematical Sciences (AIMS), 2006.  Google Scholar

[2]

T. Bartsch, Topological Methods for Variational Problems with Symmetries, Lecture Notes in Mathematics 1560. Springer-Verlag, 1993. doi: 10.1007/BFb0073859.  Google Scholar

[3]

T. Bartsch and Q. Dai, Periodic solutions of the N-vortex Hamiltonian system in planar domains,, J. Differential Equations, 260 (2016), 2275-2295.  doi: 10.1016/j.jde.2015.10.002.  Google Scholar

[4]

S. Boatto and H. Cabral, Nonlinear stability of a latitudinal ring of point-vortices on a nonrotating sphere,, SIAM J. Appl. Math., 64 (2003), 216-230.  doi: 10.1137/S0036139902399965.  Google Scholar

[5]

V. A. Bogolmonov, Dynamics of vorticity at a sphere, Fluid. Dyn. (USSR), 6 (1977), 863-870.   Google Scholar

[6]

A. V. BorisovI. S. Mamaev and A. A. Kilin, Absolute and relative choreographies in the problem of point vortices moving on a plane,, Regular and Chaotic Dynamics, 9 (2004), 101-111.  doi: 10.1070/RD2004v009n02ABEH000269.  Google Scholar

[7]

A. V. Borisov, I. S. Mamaev and A. A. Kilin, New periodic solutions for three or four identical vortices on a plane and a sphere, Discrete and Continuous Dynamical Systems - Series B, 2005,110–120.  Google Scholar

[8]

R. Calleja, E. Doedel and C. García-Azpeitia, Symmetries and choreographies in families bifurcating from the polygonal relative equilibrium of the n-body problem,, Celest. Mech. Dyn. Astr., 130 (2018), Art. 48, 28 pp. doi: 10.1007/s10569-018-9841-9.  Google Scholar

[9]

R. CallejaE. Doedel and C. García-Azpeitia, Choreographies of the$n$-vortex problem,, Regular and Chaotic Dynamics, 23 (2018), 595-612.  doi: 10.1134/S156035471805009X.  Google Scholar

[10]

A. C. Carvalho and H. E. Cabral, Lyapunov Orbits in the n-Vortex Problem,, Regular and Chaotic Dynamics, 19 (2014), 348-362.  doi: 10.1134/S156035471403006X.  Google Scholar

[11]

A. Chenciner and J. Fejoz, Unchained polygons and the n-body problem,, Regular and chaotic dynamics, 14 (2009), 64-115.  doi: 10.1134/S1560354709010079.  Google Scholar

[12]

A. Chenciner and R. Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses,, Ann. of Math., 152 (2000), 881-901.  doi: 10.2307/2661357.  Google Scholar

[13]

Q. DaiB. Gebhard and T. Bartsch, Periodic solutions of N-vortex type Hamiltonian systems near the domain boundary,, SIAM Journal on Applied Mathematics, 78 (2018), 977-995.  doi: 10.1137/16M1107085.  Google Scholar

[14]

F. Diacu, Relative Equilibria of the Curved N-Body Problem, Atlantis Series in Dynamical Systems 1. Atlantis Press 2012. doi: 10.2991/978-94-91216-68-8.  Google Scholar

[15]

C. García-Azpeitia and J. Ize, Global bifurcation of polygonal relative equilibria for masses, vortices and dNLS oscillators,, J. Differential Equations, 251 (2011), 3202-3227.  doi: 10.1016/j.jde.2011.06.021.  Google Scholar

[16]

C. García-Azpeitia and J. Ize, Bifurcation of periodic solutions from a ring configuration in the vortex and filament problems,, J. Differential Equations, 252 (2012), 5662-5678.  doi: 10.1016/j.jde.2012.01.044.  Google Scholar

[17]

C. García-Azpeitia and J. Ize, Global bifurcation of planar and spatial periodic solutions from the polygonal relative equilibria for the $n$-body problem, J. Differential Equations, 254 (2013), 2033–2075. doi: 10.1016/j.jde.2012.08.022.  Google Scholar

[18]

L. S. Gromeka, On Vortex Motions of Liquid on a Sphere, Collected Papers Moscow, AN USSR, 1952.  Google Scholar

[19]

J. Ize and A. Vignoli, Equivariant Degree Theory, De Gruyter Series in Nonlinear Analysis and Applications 8. Walter de Gruyter, Berlin, 2003. doi: 10.1515/9783110200027.  Google Scholar

[20]

F. Laurent-PolzJ. Montaldi and R. Roberts, Point vortices on the sphere: Stability of symmetric relative equilibria,, J. Geom. Mech., 3 (2011), 439-486.  doi: 10.3934/jgm.2011.3.439.  Google Scholar

[21]

J. MontaldiR. Roberts and I. Stewart, Periodic solutions near equilibria of symmetric Hamiltonian systems, Phil. Trans. R. Soc. Lond. A, 325 (1988), 237-293.  doi: 10.1098/rsta.1988.0053.  Google Scholar

[22]

J. Montaldi and T. Tokieda, Deformation of geometry and bifurcations of vortex rings,, Recent Trends in Dynamical Systems, Springer Basel, 335 (2013), 335–370. doi: 10.1007/978-3-0348-0451-6_14.  Google Scholar

[23]

C. Moore, Braids in classical gravity, Physical Review Letters, 70 (1993), 3675-3679.  doi: 10.1103/PhysRevLett.70.3675.  Google Scholar

[24]

P. K. Newton, The N-vortex Problem, Analytical Techniques, Applied Mathematical Sciences, 145. Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4684-9290-3.  Google Scholar

[25]

C. Simó, New families of solutions in N-body problems, European Congress of Mathematics, 101–115, Progr. Math., 201, Birkhäuser, Basel, 2001.  Google Scholar

[26]

J. Vankerschaver and M. Leok, A novel formulation of point vortex dynamics on the sphere: Geometrical and numerical aspects,, Journal of Nonlinear Science, 24 (2013), 1-37.  doi: 10.1007/s00332-013-9182-5.  Google Scholar

show all references

References:
[1]

Z. Balanov, W. Krawcewicz and H. Steinlein, Applied Equivariant Degree, AIMS Series on Differential Equations & Dynamical Systems, 1. American Institute of Mathematical Sciences (AIMS), 2006.  Google Scholar

[2]

T. Bartsch, Topological Methods for Variational Problems with Symmetries, Lecture Notes in Mathematics 1560. Springer-Verlag, 1993. doi: 10.1007/BFb0073859.  Google Scholar

[3]

T. Bartsch and Q. Dai, Periodic solutions of the N-vortex Hamiltonian system in planar domains,, J. Differential Equations, 260 (2016), 2275-2295.  doi: 10.1016/j.jde.2015.10.002.  Google Scholar

[4]

S. Boatto and H. Cabral, Nonlinear stability of a latitudinal ring of point-vortices on a nonrotating sphere,, SIAM J. Appl. Math., 64 (2003), 216-230.  doi: 10.1137/S0036139902399965.  Google Scholar

[5]

V. A. Bogolmonov, Dynamics of vorticity at a sphere, Fluid. Dyn. (USSR), 6 (1977), 863-870.   Google Scholar

[6]

A. V. BorisovI. S. Mamaev and A. A. Kilin, Absolute and relative choreographies in the problem of point vortices moving on a plane,, Regular and Chaotic Dynamics, 9 (2004), 101-111.  doi: 10.1070/RD2004v009n02ABEH000269.  Google Scholar

[7]

A. V. Borisov, I. S. Mamaev and A. A. Kilin, New periodic solutions for three or four identical vortices on a plane and a sphere, Discrete and Continuous Dynamical Systems - Series B, 2005,110–120.  Google Scholar

[8]

R. Calleja, E. Doedel and C. García-Azpeitia, Symmetries and choreographies in families bifurcating from the polygonal relative equilibrium of the n-body problem,, Celest. Mech. Dyn. Astr., 130 (2018), Art. 48, 28 pp. doi: 10.1007/s10569-018-9841-9.  Google Scholar

[9]

R. CallejaE. Doedel and C. García-Azpeitia, Choreographies of the$n$-vortex problem,, Regular and Chaotic Dynamics, 23 (2018), 595-612.  doi: 10.1134/S156035471805009X.  Google Scholar

[10]

A. C. Carvalho and H. E. Cabral, Lyapunov Orbits in the n-Vortex Problem,, Regular and Chaotic Dynamics, 19 (2014), 348-362.  doi: 10.1134/S156035471403006X.  Google Scholar

[11]

A. Chenciner and J. Fejoz, Unchained polygons and the n-body problem,, Regular and chaotic dynamics, 14 (2009), 64-115.  doi: 10.1134/S1560354709010079.  Google Scholar

[12]

A. Chenciner and R. Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses,, Ann. of Math., 152 (2000), 881-901.  doi: 10.2307/2661357.  Google Scholar

[13]

Q. DaiB. Gebhard and T. Bartsch, Periodic solutions of N-vortex type Hamiltonian systems near the domain boundary,, SIAM Journal on Applied Mathematics, 78 (2018), 977-995.  doi: 10.1137/16M1107085.  Google Scholar

[14]

F. Diacu, Relative Equilibria of the Curved N-Body Problem, Atlantis Series in Dynamical Systems 1. Atlantis Press 2012. doi: 10.2991/978-94-91216-68-8.  Google Scholar

[15]

C. García-Azpeitia and J. Ize, Global bifurcation of polygonal relative equilibria for masses, vortices and dNLS oscillators,, J. Differential Equations, 251 (2011), 3202-3227.  doi: 10.1016/j.jde.2011.06.021.  Google Scholar

[16]

C. García-Azpeitia and J. Ize, Bifurcation of periodic solutions from a ring configuration in the vortex and filament problems,, J. Differential Equations, 252 (2012), 5662-5678.  doi: 10.1016/j.jde.2012.01.044.  Google Scholar

[17]

C. García-Azpeitia and J. Ize, Global bifurcation of planar and spatial periodic solutions from the polygonal relative equilibria for the $n$-body problem, J. Differential Equations, 254 (2013), 2033–2075. doi: 10.1016/j.jde.2012.08.022.  Google Scholar

[18]

L. S. Gromeka, On Vortex Motions of Liquid on a Sphere, Collected Papers Moscow, AN USSR, 1952.  Google Scholar

[19]

J. Ize and A. Vignoli, Equivariant Degree Theory, De Gruyter Series in Nonlinear Analysis and Applications 8. Walter de Gruyter, Berlin, 2003. doi: 10.1515/9783110200027.  Google Scholar

[20]

F. Laurent-PolzJ. Montaldi and R. Roberts, Point vortices on the sphere: Stability of symmetric relative equilibria,, J. Geom. Mech., 3 (2011), 439-486.  doi: 10.3934/jgm.2011.3.439.  Google Scholar

[21]

J. MontaldiR. Roberts and I. Stewart, Periodic solutions near equilibria of symmetric Hamiltonian systems, Phil. Trans. R. Soc. Lond. A, 325 (1988), 237-293.  doi: 10.1098/rsta.1988.0053.  Google Scholar

[22]

J. Montaldi and T. Tokieda, Deformation of geometry and bifurcations of vortex rings,, Recent Trends in Dynamical Systems, Springer Basel, 335 (2013), 335–370. doi: 10.1007/978-3-0348-0451-6_14.  Google Scholar

[23]

C. Moore, Braids in classical gravity, Physical Review Letters, 70 (1993), 3675-3679.  doi: 10.1103/PhysRevLett.70.3675.  Google Scholar

[24]

P. K. Newton, The N-vortex Problem, Analytical Techniques, Applied Mathematical Sciences, 145. Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4684-9290-3.  Google Scholar

[25]

C. Simó, New families of solutions in N-body problems, European Congress of Mathematics, 101–115, Progr. Math., 201, Birkhäuser, Basel, 2001.  Google Scholar

[26]

J. Vankerschaver and M. Leok, A novel formulation of point vortex dynamics on the sphere: Geometrical and numerical aspects,, Journal of Nonlinear Science, 24 (2013), 1-37.  doi: 10.1007/s00332-013-9182-5.  Google Scholar

[1]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[2]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[3]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[4]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[5]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[6]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[7]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[8]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[9]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[10]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[11]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[12]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[13]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[14]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[15]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[16]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[17]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[18]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[19]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[20]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (78)
  • HTML views (197)
  • Cited by (0)

Other articles
by authors

[Back to Top]