September  2019, 11(3): 439-446. doi: 10.3934/jgm.2019022

Improving E. Cartan considerations on the invariance of nonholonomic mechanics

1. 

Universidade de Lisboa, Instituto Superior Técnico, Center for Mathematical Analysis, Geometry and Dynamical Systems, Av. Rovisco Pais, 1049-001 Lisbon, Portugal

2. 

Universidade de São Paulo, Instituto de Matemática e Estatística, Departamento de Matemática Aplicada, Rua do Matão, 1010, 05508-090 São Paulo, Brazil

3. 

Universidade de São Paulo, Instituto de Matemática e Estatística, Departamento de Matemática, Rua do Matão, 1010, 05508-090 São Paulo, Brazil

Received  February 2019 Published  August 2019

This paper concerns an intrinsic formulation of nonholonomic mechanics. Our point of departure is the paper [6], by Koiller et al., revisiting E. Cartan's address at the International Congress of Mathematics held in 1928 at Bologna, Italy ([3]). Two notions of equivalence for nonholonomic mechanical systems $ ( {\mathsf{{M}}}, {{\mathsf{{g}}}}, {\mathscr{D}}) $ are introduced and studied. According to [6], the notions of equivalence considered in this paper coincide. A counterexample is presented here showing that this coincidence is not always true.

Citation: Waldyr M. Oliva, Gláucio Terra. Improving E. Cartan considerations on the invariance of nonholonomic mechanics. Journal of Geometric Mechanics, 2019, 11 (3) : 439-446. doi: 10.3934/jgm.2019022
References:
[1]

A. Bakša, The geometrization of the motion of certain nonholonomic systems, Mat. Vesnik, 12 (1975), 233-240.   Google Scholar

[2]

D. I. BarrettR. BiggsC. C. Remsing and O. Rossi, Invariant nonholonomic Riemannian structures on three-dimensional Lie groups, J. Geom. Mech., 8 (2016), 139-167.  doi: 10.3934/jgm.2016001.  Google Scholar

[3]

É. Cartan, Sur la represéntation géométrique des systmes matériels non holonomes, in Proc Int Congr Math, 4, Bologna, 1928, 253–261. Google Scholar

[4]

V. Dragović and B. Gajić, The Wagner curvature tensor in nonholonomic mechanics, Regul. Chaotic Dyn., 8 (2003), 105-123.  doi: 10.1070/RD2003v008n01ABEH000229.  Google Scholar

[5]

K. Ehlers and J. Koiller, Cartan meets Chaplygin, Theoretical and Applied Mechanics, 46 (2019), 15-46.  doi: 10.2298/TAM190116006E.  Google Scholar

[6]

J. Koiller, P. R. Rodrigues and P. Pitanga, Non-holonomic connections following Élie Cartan, Anais da Academia Brasileira de Cincias, 73 (2001), 165–190, http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000200003&nrm=iso. doi: 10.1590/S0001-37652001000200003.  Google Scholar

[7]

W. M. Oliva, Geometric Mechanics, vol. 1798 of Lecture Notes in Mathematics, Springer-Verlag, 2002. doi: 10.1007/b84214.  Google Scholar

[8]

J. N. Tavares, About Cartan geometrization of non-holonomic mechanics, J. Geom. Phys., 45 (2003), 1-23.  doi: 10.1016/S0393-0440(02)00118-3.  Google Scholar

[9]

G. Terra, The parallel derivative, Revista Matemática Contemporânea, 29 (2005), 157-170.   Google Scholar

show all references

References:
[1]

A. Bakša, The geometrization of the motion of certain nonholonomic systems, Mat. Vesnik, 12 (1975), 233-240.   Google Scholar

[2]

D. I. BarrettR. BiggsC. C. Remsing and O. Rossi, Invariant nonholonomic Riemannian structures on three-dimensional Lie groups, J. Geom. Mech., 8 (2016), 139-167.  doi: 10.3934/jgm.2016001.  Google Scholar

[3]

É. Cartan, Sur la represéntation géométrique des systmes matériels non holonomes, in Proc Int Congr Math, 4, Bologna, 1928, 253–261. Google Scholar

[4]

V. Dragović and B. Gajić, The Wagner curvature tensor in nonholonomic mechanics, Regul. Chaotic Dyn., 8 (2003), 105-123.  doi: 10.1070/RD2003v008n01ABEH000229.  Google Scholar

[5]

K. Ehlers and J. Koiller, Cartan meets Chaplygin, Theoretical and Applied Mechanics, 46 (2019), 15-46.  doi: 10.2298/TAM190116006E.  Google Scholar

[6]

J. Koiller, P. R. Rodrigues and P. Pitanga, Non-holonomic connections following Élie Cartan, Anais da Academia Brasileira de Cincias, 73 (2001), 165–190, http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000200003&nrm=iso. doi: 10.1590/S0001-37652001000200003.  Google Scholar

[7]

W. M. Oliva, Geometric Mechanics, vol. 1798 of Lecture Notes in Mathematics, Springer-Verlag, 2002. doi: 10.1007/b84214.  Google Scholar

[8]

J. N. Tavares, About Cartan geometrization of non-holonomic mechanics, J. Geom. Phys., 45 (2003), 1-23.  doi: 10.1016/S0393-0440(02)00118-3.  Google Scholar

[9]

G. Terra, The parallel derivative, Revista Matemática Contemporânea, 29 (2005), 157-170.   Google Scholar

[1]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001

[2]

Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021077

[3]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[4]

Kun Hu, Yuanshi Wang. Dynamics of consumer-resource systems with consumer's dispersal between patches. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021077

[5]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[6]

Maolin Cheng, Yun Liu, Jianuo Li, Bin Liu. Nonlinear Grey Bernoulli model NGBM (1, 1)'s parameter optimisation method and model application. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021054

[7]

Zemer Kosloff, Terry Soo. The orbital equivalence of Bernoulli actions and their Sinai factors. Journal of Modern Dynamics, 2021, 17: 145-182. doi: 10.3934/jmd.2021005

[8]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[9]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[10]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404

[11]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[12]

Jun Tu, Zijiao Sun, Min Huang. Supply chain coordination considering e-tailer's promotion effort and logistics provider's service effort. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021062

[13]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[14]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[15]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[16]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[17]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[18]

Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049

[19]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004

[20]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (187)
  • HTML views (217)
  • Cited by (0)

Other articles
by authors

[Back to Top]