December  2019, 11(4): 487-510. doi: 10.3934/jgm.2019024

Morse families and Dirac systems

1. 

Departamento de Matemática Aplicada, Universidad Politécnica de Madrid, Av. Juan de Herrera 4, 28040 Madrid, Spain

2. 

Departamento de Matemática, Universidad Nacional del Sur, CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina

3. 

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), C/Nicolás Cabrera 13-15, 28049 Madrid, Spain

 

Received  April 2018 Revised  April 2019 Published  November 2019

Dirac structures and Morse families are used to obtain a geometric formalism that unifies most of the scenarios in mechanics (constrained calculus, nonholonomic systems, optimal control theory, higher-order mechanics, etc.), as the examples in the paper show. This approach generalizes the previous results on Dirac structures associated with Lagrangian submanifolds. An integrability algorithm in the sense of Mendella, Marmo and Tulczyjew is described for the generalized Dirac dynamical systems under study to determine the set where the implicit differential equations have solutions.

Citation: María Barbero Liñán, Hernán Cendra, Eduardo García Toraño, David Martín de Diego. Morse families and Dirac systems. Journal of Geometric Mechanics, 2019, 11 (4) : 487-510. doi: 10.3934/jgm.2019024
References:
[1]

R. Abraham and J. Marsden, Foundations of Mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978.  Google Scholar

[2]

V. I. Arnol'd, V. V. Kozlov and A. I. Neĭshtadt, Dynamical Systems. III, Encyclopaedia of Mathematical Sciences, 3. Springer-Verlag, Berlin, 1988. doi: 10.1007/978-3-642-61551-1.  Google Scholar

[3]

M. Barbero-Liñán, H. Cendra, E. García-Toraño Andrés and D. Martín de Diego, New insights in the geometry and interconnection of port-Hamiltonian systems, J. Phys. A, 51 (2018), 375201, 30 pp. doi: 10.1088/1751-8121/aad4ba.  Google Scholar

[4]

M. Barbero-LiñánD. Iglesias Ponte and D. Martín de Diego, Morse families in optimal control problems, SIAM J. Control Optim., 53 (2015), 414-433.  doi: 10.1137/120903488.  Google Scholar

[5]

S. Bates and A. Weinstein, Lectures on the Geometry of Quantization, Berkeley Mathematics Lecture Notes, 8. American Mathematical Society, Providence, RI, Berkeley Center for Pure and Applied Mathematics, Berkeley, CA, 1997. doi: 10.1016/s0898-1221(97)90217-0.  Google Scholar

[6]

H. Bursztyn, A brief introduction to Dirac manifolds, Geometric and Topological Methods for Quantum Field Theory, Cambridge Univ. Press, Cambridge, (2013), 4–38.  Google Scholar

[7]

H. Bursztyn and O. Radko, Gauge equivalence of Dirac structures and symplectic groupoids, Ann. Inst. Fourier (Grenoble), 53 (2003), 309-337.  doi: 10.5802/aif.1945.  Google Scholar

[8]

J. F. Cariñena, Theory of singular Lagrangians, Fortschr. Phys., 38 (1990), 641-679.  doi: 10.1002/prop.2190380902.  Google Scholar

[9]

H. CendraM. Etchechoury and S. Ferraro, An extension of the Dirac and Gotay-Nester theories of constraints for Dirac dynamical systems, J. Geom. Mech., 6 (2014), 167-236.  doi: 10.3934/jgm.2014.6.167.  Google Scholar

[10]

H. Cendra, L. A. Ibort and J. E. Marsden, Horizontal Lin constraints, Clebsch potentials and variational principles on principal fiber bundles, XV International Colloquium on Group Theoretical Methods in Physics, World Sci. Publ., Teaneck, NJ, (1987), 446–450.  Google Scholar

[11]

H. Cendra and J. Marsden, Lin constraints, Clebsch potentials and variational principles, Phys. D, 27 (1987), 63-89.  doi: 10.1016/0167-2789(87)90005-4.  Google Scholar

[12]

H. Cendra, T. Ratiu and H. Yoshimura, Dirac-weinstein reduction, preprint, 2017. Google Scholar

[13]

J. CerveraA. J. van der Schaft and A. Baños, On composition of Dirac structures and its implications for control by interconnection, Nonlinear and Adaptive Control, Lect. Notes Control Inf. Sci., Springer, Berlin, 281 (2003), 55-63.  doi: 10.1007/3-540-45802-6_5.  Google Scholar

[14]

J. CerveraA. van der Schaft and A. Baños, Interconnection of port-Hamiltonian systems and composition of Dirac structures, Automatica J. IFAC, 43 (2007), 212-225.  doi: 10.1016/j.automatica.2006.08.014.  Google Scholar

[15]

J. CortésM. de LeónD. Martín de Diego and S. Martínez, Geometric description of vakonomic and nonholonomic dynamics. Comparison of solutions, SIAM J. Control Optim., 41 (2002), 1389-1412.  doi: 10.1137/S036301290036817X.  Google Scholar

[16]

T. Courant, Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), 631-661.  doi: 10.1090/S0002-9947-1990-0998124-1.  Google Scholar

[17]

T. Courant and A. Weinstein, Beyond Poisson structures, Action Hamiltoniennes de Groupes, Troisième Théorème de Lie, Travaux en Cours, Hermann, Paris, 27 (1988), 38-49.   Google Scholar

[18]

M. Dalsmo and A. van der Schaft, On representations and integrability of mathematical structures in energy-conserving physical systems, SIAM J. Control Optim, 37 (1999), 54-91.  doi: 10.1137/S0363012996312039.  Google Scholar

[19]

M. de LeónJ. Marrero and D. Martín de Diego, Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics, J. Geom. Mech., 2 (2010), 159-198.  doi: 10.3934/jgm.2010.2.159.  Google Scholar

[20]

M. de León and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory. A Geometrical Approach of Lagrangian and Hamiltonian Formalisms Involving Higher Order Derivatives, North-Holland Mathematics Studies, 112. Notes on Pure Mathematics, 102. North-Holland Publishing Co., Amsterdam, 1985.  Google Scholar

[21]

M. de León and P. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 158. North-Holland Publishing Co., Amsterdam, 1989.  Google Scholar

[22]

P. A. M. Dirac, Generalized Hamiltonian dynamics, Canadian J. Math., 2 (1950), 129-148.  doi: 10.4153/CJM-1950-012-1.  Google Scholar

[23]

P. A. M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science Monographs Series, 2. Belfer Graduate School of Science, New York, Produced and Distributed by Academic Press, Inc., New York, 1967.  Google Scholar

[24]

I. Y. Dorfman, Dirac structures of integrable evolution equations, Phys. Lett. A, 125 (1987), 240-246.  doi: 10.1016/0375-9601(87)90201-5.  Google Scholar

[25]

M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems. Ⅰ. The constraint algorithm and the equivalence theorem, Ann. Inst. H. Poincaré Sect. A (N.S.), 30 (1979), 129-142.   Google Scholar

[26]

M. J. GotayJ. M. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints, J. Math. Phys., 19 (1978), 2388-2399.  doi: 10.1063/1.523597.  Google Scholar

[27]

K. Grabowska and J. Grabowski, Dirac algebroids in Lagrangian and Hamiltonian mechanics, J. Geom. Phys., 61 (2011), 2233-2253.  doi: 10.1016/j.geomphys.2011.06.018.  Google Scholar

[28]

K. GrabowskaP. Urbański and J. Grabowski, Geometrical mechanics on algebroids, Int. J. Geom. Methods Mod. Phys., 3 (2006), 559-575.  doi: 10.1142/S0219887806001259.  Google Scholar

[29]

J. Grabowski, M. de León, J. C. Marrero and D. Martín de Diego, Nonholonomic constraints: A new viewpoint, J. Math. Phys., 50 (2009), 013520, 17 pp. doi: 10.1063/1.3049752.  Google Scholar

[30]

J. Grabowski and P. Urbański, Algebroids-general differential calculi on vector bundles, J. Geom. Phys., 31 (1999), 111-141.  doi: 10.1016/S0393-0440(99)00007-8.  Google Scholar

[31]

V. Guillemin and S. Sternberg, Geometric Asymptotics, Mathematical Surveys, No. 14. American Mathematical Society, Providence, R.I., 1977.  Google Scholar

[32]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31. Springer, Heidelberg, 2010.  Google Scholar

[33] D. D. Holm, Geometric mechanics. Part I. Dynamics and Symmetry, Second edition, Imperial College Press, London, 2011.   Google Scholar
[34]

D. D. HolmJ. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81.  doi: 10.1006/aima.1998.1721.  Google Scholar

[35]

L. Hörmander, Fourier integral operators. Ⅰ, Acta Math., 127 (1971), 79-183.  doi: 10.1007/BF02392052.  Google Scholar

[36]

D. IglesiasJ. C. MarreroD. Martín de Diego and D. Sosa, Singular Lagrangian systems and variational constrained mechanics on Lie algebroids, Dyn. Syst., 23 (2008), 351-397.  doi: 10.1080/14689360802294220.  Google Scholar

[37]

F. Jiménez and H. Yoshimura, Dirac structures in vakonomic mechanics, J. Geom. Phys., 94 (2015), 158-178.  doi: 10.1016/j.geomphys.2014.11.002.  Google Scholar

[38]

M. Leok and T. Ohsawa, Variational and geometric structures of discrete Dirac mechanics, Found. Comput. Math., 11 (2011), 529-562.  doi: 10.1007/s10208-011-9096-2.  Google Scholar

[39]

P. Libermann and C.-M. Marle. Symplectic Geometry and Analytical Mechanics, Mathematics and its Applications, 35. D. Reidel Publishing Co., Dordrecht, 1987. doi: 10.1007/978-94-009-3807-6.  Google Scholar

[40]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Second edition, Texts in Applied Mathematics, 17. Springer-Verlag, New York, 1999. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[41]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514.  doi: 10.1017/S096249290100006X.  Google Scholar

[42]

E. Martínez, Lie algebroids in classical mechanics and optimal control, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), 17. Google Scholar

[43]

G. MendellaG. Marmo and W. Tulczyjew, Integrability of implicit differential equations, J. Phys. A, 28 (1995), 149-163.  doi: 10.1088/0305-4470/28/1/018.  Google Scholar

[44]

H. Parks and M. Leok, Variational itegrators for interconnected Lagrange-Dirac systems, J. Nonlinear Sci., 27 (2017), 1399-1434.  doi: 10.1007/s00332-017-9364-7.  Google Scholar

[45]

L. S. Pontryagin, V. G. Boltyanskiĭ, R. V. Gamkrelidze and E. F. Mishchenko, Selected Works. Vol. 4. The mathematical Theory of Optimal Processes, Classics of Soviet Mathematics, Gordon & Breach Science Publishers, New York, 1986.  Google Scholar

[46]

W. M. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique hamiltonienne, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), Ai, A15–A18.  Google Scholar

[47]

W. M. Tulczyjew., Les sous-variétés lagrangiennes et la dynamique lagrangienne, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), Av, A675–A678.  Google Scholar

[48]

A. van der Schaft and D. Jeltsema, Port-Hamiltonian systems theory: An introductory overview, Foundations and Trends in Systems and Control, 1 (2014), 173-378.   Google Scholar

[49]

A. van der Schaft and B. Maschke, The hamiltonian formulation of energy conserving physical systems with external ports, AEU. Archiv für Elektronik und Übertragungstechnik, 49 (1995), 362-371.   Google Scholar

[50]

A. van der Schaft and B. Maschke, Mathematical modeling of constrained hamiltonian systems, IFAC Proceedings Volumes, 28 (1995), 637-642.   Google Scholar

[51]

A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math., 6 (1971), 329-346.  doi: 10.1016/0001-8708(71)90020-X.  Google Scholar

[52]

A. Weinstein, Lectures on Symplectic Manifolds, CBMS Regional Conference Series in Mathematics, 29. American Mathematical Society, Providence, R.I., 1979.  Google Scholar

[53]

H. Yoshimura and J. Marsden, Dirac structures in Lagrangian mechanics. Ⅰ. Implicit Lagrangian systems, J. Geom. Phys., 57 (2006), 133-156.  doi: 10.1016/j.geomphys.2006.02.009.  Google Scholar

[54]

H. Yoshimura and J. Marsden, Dirac structures in Lagrangian mechanics. Ⅱ. Variational structures, J. Geom. Phys., 57 (2006), 209-250.  doi: 10.1016/j.geomphys.2006.02.012.  Google Scholar

show all references

References:
[1]

R. Abraham and J. Marsden, Foundations of Mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978.  Google Scholar

[2]

V. I. Arnol'd, V. V. Kozlov and A. I. Neĭshtadt, Dynamical Systems. III, Encyclopaedia of Mathematical Sciences, 3. Springer-Verlag, Berlin, 1988. doi: 10.1007/978-3-642-61551-1.  Google Scholar

[3]

M. Barbero-Liñán, H. Cendra, E. García-Toraño Andrés and D. Martín de Diego, New insights in the geometry and interconnection of port-Hamiltonian systems, J. Phys. A, 51 (2018), 375201, 30 pp. doi: 10.1088/1751-8121/aad4ba.  Google Scholar

[4]

M. Barbero-LiñánD. Iglesias Ponte and D. Martín de Diego, Morse families in optimal control problems, SIAM J. Control Optim., 53 (2015), 414-433.  doi: 10.1137/120903488.  Google Scholar

[5]

S. Bates and A. Weinstein, Lectures on the Geometry of Quantization, Berkeley Mathematics Lecture Notes, 8. American Mathematical Society, Providence, RI, Berkeley Center for Pure and Applied Mathematics, Berkeley, CA, 1997. doi: 10.1016/s0898-1221(97)90217-0.  Google Scholar

[6]

H. Bursztyn, A brief introduction to Dirac manifolds, Geometric and Topological Methods for Quantum Field Theory, Cambridge Univ. Press, Cambridge, (2013), 4–38.  Google Scholar

[7]

H. Bursztyn and O. Radko, Gauge equivalence of Dirac structures and symplectic groupoids, Ann. Inst. Fourier (Grenoble), 53 (2003), 309-337.  doi: 10.5802/aif.1945.  Google Scholar

[8]

J. F. Cariñena, Theory of singular Lagrangians, Fortschr. Phys., 38 (1990), 641-679.  doi: 10.1002/prop.2190380902.  Google Scholar

[9]

H. CendraM. Etchechoury and S. Ferraro, An extension of the Dirac and Gotay-Nester theories of constraints for Dirac dynamical systems, J. Geom. Mech., 6 (2014), 167-236.  doi: 10.3934/jgm.2014.6.167.  Google Scholar

[10]

H. Cendra, L. A. Ibort and J. E. Marsden, Horizontal Lin constraints, Clebsch potentials and variational principles on principal fiber bundles, XV International Colloquium on Group Theoretical Methods in Physics, World Sci. Publ., Teaneck, NJ, (1987), 446–450.  Google Scholar

[11]

H. Cendra and J. Marsden, Lin constraints, Clebsch potentials and variational principles, Phys. D, 27 (1987), 63-89.  doi: 10.1016/0167-2789(87)90005-4.  Google Scholar

[12]

H. Cendra, T. Ratiu and H. Yoshimura, Dirac-weinstein reduction, preprint, 2017. Google Scholar

[13]

J. CerveraA. J. van der Schaft and A. Baños, On composition of Dirac structures and its implications for control by interconnection, Nonlinear and Adaptive Control, Lect. Notes Control Inf. Sci., Springer, Berlin, 281 (2003), 55-63.  doi: 10.1007/3-540-45802-6_5.  Google Scholar

[14]

J. CerveraA. van der Schaft and A. Baños, Interconnection of port-Hamiltonian systems and composition of Dirac structures, Automatica J. IFAC, 43 (2007), 212-225.  doi: 10.1016/j.automatica.2006.08.014.  Google Scholar

[15]

J. CortésM. de LeónD. Martín de Diego and S. Martínez, Geometric description of vakonomic and nonholonomic dynamics. Comparison of solutions, SIAM J. Control Optim., 41 (2002), 1389-1412.  doi: 10.1137/S036301290036817X.  Google Scholar

[16]

T. Courant, Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), 631-661.  doi: 10.1090/S0002-9947-1990-0998124-1.  Google Scholar

[17]

T. Courant and A. Weinstein, Beyond Poisson structures, Action Hamiltoniennes de Groupes, Troisième Théorème de Lie, Travaux en Cours, Hermann, Paris, 27 (1988), 38-49.   Google Scholar

[18]

M. Dalsmo and A. van der Schaft, On representations and integrability of mathematical structures in energy-conserving physical systems, SIAM J. Control Optim, 37 (1999), 54-91.  doi: 10.1137/S0363012996312039.  Google Scholar

[19]

M. de LeónJ. Marrero and D. Martín de Diego, Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics, J. Geom. Mech., 2 (2010), 159-198.  doi: 10.3934/jgm.2010.2.159.  Google Scholar

[20]

M. de León and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory. A Geometrical Approach of Lagrangian and Hamiltonian Formalisms Involving Higher Order Derivatives, North-Holland Mathematics Studies, 112. Notes on Pure Mathematics, 102. North-Holland Publishing Co., Amsterdam, 1985.  Google Scholar

[21]

M. de León and P. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 158. North-Holland Publishing Co., Amsterdam, 1989.  Google Scholar

[22]

P. A. M. Dirac, Generalized Hamiltonian dynamics, Canadian J. Math., 2 (1950), 129-148.  doi: 10.4153/CJM-1950-012-1.  Google Scholar

[23]

P. A. M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science Monographs Series, 2. Belfer Graduate School of Science, New York, Produced and Distributed by Academic Press, Inc., New York, 1967.  Google Scholar

[24]

I. Y. Dorfman, Dirac structures of integrable evolution equations, Phys. Lett. A, 125 (1987), 240-246.  doi: 10.1016/0375-9601(87)90201-5.  Google Scholar

[25]

M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems. Ⅰ. The constraint algorithm and the equivalence theorem, Ann. Inst. H. Poincaré Sect. A (N.S.), 30 (1979), 129-142.   Google Scholar

[26]

M. J. GotayJ. M. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints, J. Math. Phys., 19 (1978), 2388-2399.  doi: 10.1063/1.523597.  Google Scholar

[27]

K. Grabowska and J. Grabowski, Dirac algebroids in Lagrangian and Hamiltonian mechanics, J. Geom. Phys., 61 (2011), 2233-2253.  doi: 10.1016/j.geomphys.2011.06.018.  Google Scholar

[28]

K. GrabowskaP. Urbański and J. Grabowski, Geometrical mechanics on algebroids, Int. J. Geom. Methods Mod. Phys., 3 (2006), 559-575.  doi: 10.1142/S0219887806001259.  Google Scholar

[29]

J. Grabowski, M. de León, J. C. Marrero and D. Martín de Diego, Nonholonomic constraints: A new viewpoint, J. Math. Phys., 50 (2009), 013520, 17 pp. doi: 10.1063/1.3049752.  Google Scholar

[30]

J. Grabowski and P. Urbański, Algebroids-general differential calculi on vector bundles, J. Geom. Phys., 31 (1999), 111-141.  doi: 10.1016/S0393-0440(99)00007-8.  Google Scholar

[31]

V. Guillemin and S. Sternberg, Geometric Asymptotics, Mathematical Surveys, No. 14. American Mathematical Society, Providence, R.I., 1977.  Google Scholar

[32]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31. Springer, Heidelberg, 2010.  Google Scholar

[33] D. D. Holm, Geometric mechanics. Part I. Dynamics and Symmetry, Second edition, Imperial College Press, London, 2011.   Google Scholar
[34]

D. D. HolmJ. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81.  doi: 10.1006/aima.1998.1721.  Google Scholar

[35]

L. Hörmander, Fourier integral operators. Ⅰ, Acta Math., 127 (1971), 79-183.  doi: 10.1007/BF02392052.  Google Scholar

[36]

D. IglesiasJ. C. MarreroD. Martín de Diego and D. Sosa, Singular Lagrangian systems and variational constrained mechanics on Lie algebroids, Dyn. Syst., 23 (2008), 351-397.  doi: 10.1080/14689360802294220.  Google Scholar

[37]

F. Jiménez and H. Yoshimura, Dirac structures in vakonomic mechanics, J. Geom. Phys., 94 (2015), 158-178.  doi: 10.1016/j.geomphys.2014.11.002.  Google Scholar

[38]

M. Leok and T. Ohsawa, Variational and geometric structures of discrete Dirac mechanics, Found. Comput. Math., 11 (2011), 529-562.  doi: 10.1007/s10208-011-9096-2.  Google Scholar

[39]

P. Libermann and C.-M. Marle. Symplectic Geometry and Analytical Mechanics, Mathematics and its Applications, 35. D. Reidel Publishing Co., Dordrecht, 1987. doi: 10.1007/978-94-009-3807-6.  Google Scholar

[40]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Second edition, Texts in Applied Mathematics, 17. Springer-Verlag, New York, 1999. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[41]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514.  doi: 10.1017/S096249290100006X.  Google Scholar

[42]

E. Martínez, Lie algebroids in classical mechanics and optimal control, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), 17. Google Scholar

[43]

G. MendellaG. Marmo and W. Tulczyjew, Integrability of implicit differential equations, J. Phys. A, 28 (1995), 149-163.  doi: 10.1088/0305-4470/28/1/018.  Google Scholar

[44]

H. Parks and M. Leok, Variational itegrators for interconnected Lagrange-Dirac systems, J. Nonlinear Sci., 27 (2017), 1399-1434.  doi: 10.1007/s00332-017-9364-7.  Google Scholar

[45]

L. S. Pontryagin, V. G. Boltyanskiĭ, R. V. Gamkrelidze and E. F. Mishchenko, Selected Works. Vol. 4. The mathematical Theory of Optimal Processes, Classics of Soviet Mathematics, Gordon & Breach Science Publishers, New York, 1986.  Google Scholar

[46]

W. M. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique hamiltonienne, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), Ai, A15–A18.  Google Scholar

[47]

W. M. Tulczyjew., Les sous-variétés lagrangiennes et la dynamique lagrangienne, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), Av, A675–A678.  Google Scholar

[48]

A. van der Schaft and D. Jeltsema, Port-Hamiltonian systems theory: An introductory overview, Foundations and Trends in Systems and Control, 1 (2014), 173-378.   Google Scholar

[49]

A. van der Schaft and B. Maschke, The hamiltonian formulation of energy conserving physical systems with external ports, AEU. Archiv für Elektronik und Übertragungstechnik, 49 (1995), 362-371.   Google Scholar

[50]

A. van der Schaft and B. Maschke, Mathematical modeling of constrained hamiltonian systems, IFAC Proceedings Volumes, 28 (1995), 637-642.   Google Scholar

[51]

A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math., 6 (1971), 329-346.  doi: 10.1016/0001-8708(71)90020-X.  Google Scholar

[52]

A. Weinstein, Lectures on Symplectic Manifolds, CBMS Regional Conference Series in Mathematics, 29. American Mathematical Society, Providence, R.I., 1979.  Google Scholar

[53]

H. Yoshimura and J. Marsden, Dirac structures in Lagrangian mechanics. Ⅰ. Implicit Lagrangian systems, J. Geom. Phys., 57 (2006), 133-156.  doi: 10.1016/j.geomphys.2006.02.009.  Google Scholar

[54]

H. Yoshimura and J. Marsden, Dirac structures in Lagrangian mechanics. Ⅱ. Variational structures, J. Geom. Phys., 57 (2006), 209-250.  doi: 10.1016/j.geomphys.2006.02.012.  Google Scholar

Figure 1.  The maps $ \Psi_1 $, $ \Psi_2 $ and $ \Psi_3 $
Figure 2.  $ D_M $ and $ D_{\omega_Q} $
[1]

Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67

[2]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[3]

Ünver Çiftçi. Leibniz-Dirac structures and nonconservative systems with constraints. Journal of Geometric Mechanics, 2013, 5 (2) : 167-183. doi: 10.3934/jgm.2013.5.167

[4]

Noboru Okazawa, Kentarou Yoshii. Linear evolution equations with strongly measurable families and application to the Dirac equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 723-744. doi: 10.3934/dcdss.2011.4.723

[5]

Yvette Kosmann-Schwarzbach. Dirac pairs. Journal of Geometric Mechanics, 2012, 4 (2) : 165-180. doi: 10.3934/jgm.2012.4.165

[6]

Claude Bardos, Nicolas Besse. The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits. Kinetic & Related Models, 2013, 6 (4) : 893-917. doi: 10.3934/krm.2013.6.893

[7]

Andrew Comech, David Stuart. Small amplitude solitary waves in the Dirac-Maxwell system. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1349-1370. doi: 10.3934/cpaa.2018066

[8]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[9]

Hiroaki Yoshimura, Jerrold E. Marsden. Dirac cotangent bundle reduction. Journal of Geometric Mechanics, 2009, 1 (1) : 87-158. doi: 10.3934/jgm.2009.1.87

[10]

Hernán Cendra, María Etchechoury, Sebastián J. Ferraro. An extension of the Dirac and Gotay-Nester theories of constraints for Dirac dynamical systems. Journal of Geometric Mechanics, 2014, 6 (2) : 167-236. doi: 10.3934/jgm.2014.6.167

[11]

Maria J. Esteban, Eric Séré. An overview on linear and nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 381-397. doi: 10.3934/dcds.2002.8.381

[12]

Giuseppe Maria Coclite, Helge Holden. Ground states of the Schrödinger-Maxwell system with dirac mass: Existence and asymptotics. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 117-132. doi: 10.3934/dcds.2010.27.117

[13]

Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231

[14]

Santiago Capriotti. Dirac constraints in field theory and exterior differential systems. Journal of Geometric Mechanics, 2010, 2 (1) : 1-50. doi: 10.3934/jgm.2010.2.1

[15]

Paul Loya and Jinsung Park. On gluing formulas for the spectral invariants of Dirac type operators. Electronic Research Announcements, 2005, 11: 1-11.

[16]

Shuji Machihara. One dimensional Dirac equation with quadratic nonlinearities. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 277-290. doi: 10.3934/dcds.2005.13.277

[17]

Y. T. Li, R. Wong. Integral and series representations of the dirac delta function. Communications on Pure & Applied Analysis, 2008, 7 (2) : 229-247. doi: 10.3934/cpaa.2008.7.229

[18]

Xu Zhang. On the concentration of semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5389-5413. doi: 10.3934/dcds.2018238

[19]

Matthieu Porte. Linear response for Dirac observables of Anosov diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1799-1819. doi: 10.3934/dcds.2019078

[20]

Xiaoyan Lin, Xianhua Tang. Solutions of nonlinear periodic Dirac equations with periodic potentials. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2051-2061. doi: 10.3934/dcdss.2019132

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (21)
  • HTML views (40)
  • Cited by (0)

[Back to Top]