
-
Previous Article
The problem of Lagrange on principal bundles under a subgroup of symmetries
- JGM Home
- This Issue
-
Next Article
Morse families and Dirac systems
Variational integrators for anelastic and pseudo-incompressible flows
1. | Imperial College London, Department of Mathematics, South Kensington Campus, London SW7 2AZ, UK, École Normale Supérieure, Laboratoire de Météorologie Dynamique, 24 Rue Lhomond, Paris, France |
2. | CNRS and École Normale Supérieure, Laboratoire de Météorologie Dynamique, 24 Rue Lhomond, Paris, France |
The anelastic and pseudo-incompressible equations are two well-known soundproof approximations of compressible flows useful for both theoretical and numerical analysis in meteorology, atmospheric science, and ocean studies. In this paper, we derive and test structure-preserving numerical schemes for these two systems. The derivations are based on a discrete version of the Euler-Poincaré variational method. This approach relies on a finite dimensional approximation of the (Lie) group of diffeomorphisms that preserve weighted-volume forms. These weights describe the background stratification of the fluid and correspond to the weighted velocity fields for anelastic and pseudo-incompressible approximations. In particular, we identify to these discrete Lie group configurations the associated Lie algebras such that elements of the latter correspond to weighted velocity fields that satisfy the divergence-free conditions for both systems. Defining discrete Lagrangians in terms of these Lie algebras, the discrete equations follow by means of variational principles. Descending from variational principles, the schemes exhibit further a discrete version of Kelvin circulation theorem, are applicable to irregular meshes, and show excellent long term energy behavior. We illustrate the properties of the schemes by performing preliminary test cases.
References:
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics. II. Revised and Enlarged, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. |
[2] |
V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, Applied Mathematical Sciences, 125, Springer-Verlag, New York, 1998. |
[3] |
W. Bauer, M. Baumann, L. Scheck, A. Gassmann, V. Heuveline and S. C. Jones,
Simulation of tropical-cyclone-like vortices in shallow-water ICON-hex using goal-oriented r-adaptivity, Theoretical and Computational Fluid Dynamics, 28 (2014), 107-128.
doi: 10.1007/s00162-013-0303-4. |
[4] |
W. Bauer and F. Gay-Balmaz, Towards a variational discretization of compressible fluids: The rotating shallow water equations, Journal of Computational Dynamics, 6 (2019), 1–37, http://dx.doi.org/10.3934/jcd.2019001.
doi: 10.3934/jcd.2019001. |
[5] |
C. J. Cotter and D. D. Holm,
Variational formulations of sound-proof models, Quarterly Journal of the Royal Meteorological Society, 140 (2014), 1966-1973.
doi: 10.1002/qj.2260. |
[6] |
M. Desbrun, E. S. Gawlik, F. Gay-Balmaz and V. Zeitlin,
Variational discretization for rotating stratified fluids, Discrete Continuous Dynamical Systems-A, 34 (2014), 477-509.
doi: 10.3934/dcds.2014.34.477. |
[7] |
D. R. Durran,
Improving the anelastic approximation, J. Atmos. Sci, 46 (1989), 1453-1461.
doi: 10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2. |
[8] |
D. R. Durran, Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, Texts in Applied Mathematics, 32. Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4757-3081-4. |
[9] |
E. S. Gawlik, P. Mullen, D. Pavlov, J. E. Marsden and M. Desbrun,
Geometric, variational discretization of continuum theories, Physica D, 240 (2011), 1724-1760.
doi: 10.1016/j.physd.2011.07.011. |
[10] |
D. D. Holm, J. E. Marsden and T. S. Ratiu,
The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. in Math., 137 (1998), 1-81.
doi: 10.1006/aima.1998.1721. |
[11] |
R. Klein,
Asymptotics, structure, and integration of sound-proof atmospheric flow equations, Theor. Comput. Fluid Dyn., 23 (2009), 161-195.
doi: 10.1007/s00162-009-0104-y. |
[12] | |
[13] |
F. B. Lipps and R. S. Hemler,
A scale analysis of deep moist convection and some related numerical calculations, J. Atmos. Sci., 29 (1982), 2192-2210.
doi: 10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2. |
[14] |
J. E. Marsden and A. Weinstein,
Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1983), 305-323.
doi: 10.1016/0167-2789(83)90134-3. |
[15] |
Y. Ogura and N. A. Phillips,
Scale analysis for deep and shallow convection in the atmosphere, J. Atmos. Sci., 19 (1962), 173-179.
doi: 10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2. |
[16] |
D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J. E. Marsden and M. Desbrun,
Structure-preserving discretization of incompressible fluids, Physica D, 240 (2010), 443-458.
doi: 10.1016/j.physd.2010.10.012. |
[17] |
R. Wilhelmson and Y. Ogura,
The pressure perturbation and the numerical modeling of a cloud, J. Atmos. Sci., 29 (1972), 1295-1307.
doi: 10.1175/1520-0469(1972)029<1295:TPPATN>2.0.CO;2. |
show all references
To Darryl Holm, on the occasion of his 70th birthday
References:
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics. II. Revised and Enlarged, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. |
[2] |
V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, Applied Mathematical Sciences, 125, Springer-Verlag, New York, 1998. |
[3] |
W. Bauer, M. Baumann, L. Scheck, A. Gassmann, V. Heuveline and S. C. Jones,
Simulation of tropical-cyclone-like vortices in shallow-water ICON-hex using goal-oriented r-adaptivity, Theoretical and Computational Fluid Dynamics, 28 (2014), 107-128.
doi: 10.1007/s00162-013-0303-4. |
[4] |
W. Bauer and F. Gay-Balmaz, Towards a variational discretization of compressible fluids: The rotating shallow water equations, Journal of Computational Dynamics, 6 (2019), 1–37, http://dx.doi.org/10.3934/jcd.2019001.
doi: 10.3934/jcd.2019001. |
[5] |
C. J. Cotter and D. D. Holm,
Variational formulations of sound-proof models, Quarterly Journal of the Royal Meteorological Society, 140 (2014), 1966-1973.
doi: 10.1002/qj.2260. |
[6] |
M. Desbrun, E. S. Gawlik, F. Gay-Balmaz and V. Zeitlin,
Variational discretization for rotating stratified fluids, Discrete Continuous Dynamical Systems-A, 34 (2014), 477-509.
doi: 10.3934/dcds.2014.34.477. |
[7] |
D. R. Durran,
Improving the anelastic approximation, J. Atmos. Sci, 46 (1989), 1453-1461.
doi: 10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2. |
[8] |
D. R. Durran, Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, Texts in Applied Mathematics, 32. Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4757-3081-4. |
[9] |
E. S. Gawlik, P. Mullen, D. Pavlov, J. E. Marsden and M. Desbrun,
Geometric, variational discretization of continuum theories, Physica D, 240 (2011), 1724-1760.
doi: 10.1016/j.physd.2011.07.011. |
[10] |
D. D. Holm, J. E. Marsden and T. S. Ratiu,
The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. in Math., 137 (1998), 1-81.
doi: 10.1006/aima.1998.1721. |
[11] |
R. Klein,
Asymptotics, structure, and integration of sound-proof atmospheric flow equations, Theor. Comput. Fluid Dyn., 23 (2009), 161-195.
doi: 10.1007/s00162-009-0104-y. |
[12] | |
[13] |
F. B. Lipps and R. S. Hemler,
A scale analysis of deep moist convection and some related numerical calculations, J. Atmos. Sci., 29 (1982), 2192-2210.
doi: 10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2. |
[14] |
J. E. Marsden and A. Weinstein,
Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1983), 305-323.
doi: 10.1016/0167-2789(83)90134-3. |
[15] |
Y. Ogura and N. A. Phillips,
Scale analysis for deep and shallow convection in the atmosphere, J. Atmos. Sci., 19 (1962), 173-179.
doi: 10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2. |
[16] |
D. Pavlov, P. Mullen, Y. Tong, E. Kanso, J. E. Marsden and M. Desbrun,
Structure-preserving discretization of incompressible fluids, Physica D, 240 (2010), 443-458.
doi: 10.1016/j.physd.2010.10.012. |
[17] |
R. Wilhelmson and Y. Ogura,
The pressure perturbation and the numerical modeling of a cloud, J. Atmos. Sci., 29 (1972), 1295-1307.
doi: 10.1175/1520-0469(1972)029<1295:TPPATN>2.0.CO;2. |











Continuous diffeomorphisms | Discrete diffeomorphisms |
Boussinesq: |
Boussinesq: |
Anelastic: |
Anelastic: |
Pseudo-incompressible: |
Pseudo-incompressible: |
Lie algebras | Discrete Lie algebras |
Euler-Poincaré form | Discrete Euler-Poincaré form |
Equation (4.12) | |
Common form for the three models | Common discrete form for the three models |
Form independent of the mesh | |
Expression corresponding to the discrete form on 2D simplicial grids | Discrete form on 2D simplicial grids |
Boussinesq: | Discrete Boussinesq: |
Equation (5.2) | |
Anelastic: | Discrete Anelastic: |
Equation (5.6) | |
Pseudo-incompressible: | Discrete Pseudo-incompressible: |
Equation (5.8) |
Continuous diffeomorphisms | Discrete diffeomorphisms |
Boussinesq: |
Boussinesq: |
Anelastic: |
Anelastic: |
Pseudo-incompressible: |
Pseudo-incompressible: |
Lie algebras | Discrete Lie algebras |
Euler-Poincaré form | Discrete Euler-Poincaré form |
Equation (4.12) | |
Common form for the three models | Common discrete form for the three models |
Form independent of the mesh | |
Expression corresponding to the discrete form on 2D simplicial grids | Discrete form on 2D simplicial grids |
Boussinesq: | Discrete Boussinesq: |
Equation (5.2) | |
Anelastic: | Discrete Anelastic: |
Equation (5.6) | |
Pseudo-incompressible: | Discrete Pseudo-incompressible: |
Equation (5.8) |
[1] |
Qi Hong, Jialing Wang, Yuezheng Gong. Second-order linear structure-preserving modified finite volume schemes for the regularized long wave equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6445-6464. doi: 10.3934/dcdsb.2019146 |
[2] |
Jeffrey K. Lawson, Tanya Schmah, Cristina Stoica. Euler-Poincaré reduction for systems with configuration space isotropy. Journal of Geometric Mechanics, 2011, 3 (2) : 261-275. doi: 10.3934/jgm.2011.3.261 |
[3] |
Emanuel-Ciprian Cismas. Euler-Poincaré-Arnold equations on semi-direct products II. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5993-6022. doi: 10.3934/dcds.2016063 |
[4] |
Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093 |
[5] |
Makoto Okumura, Daisuke Furihata. A structure-preserving scheme for the Allen–Cahn equation with a dynamic boundary condition. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4927-4960. doi: 10.3934/dcds.2020206 |
[6] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407 |
[7] |
Lin Lu, Qi Wang, Yongzhong Song, Yushun Wang. Local structure-preserving algorithms for the molecular beam epitaxy model with slope selection. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4745-4765. doi: 10.3934/dcdsb.2020311 |
[8] |
Makoto Okumura, Takeshi Fukao, Daisuke Furihata, Shuji Yoshikawa. A second-order accurate structure-preserving scheme for the Cahn-Hilliard equation with a dynamic boundary condition. Communications on Pure and Applied Analysis, 2022, 21 (2) : 355-392. doi: 10.3934/cpaa.2021181 |
[9] |
Yuto Miyatake, Tai Nakagawa, Tomohiro Sogabe, Shao-Liang Zhang. A structure-preserving Fourier pseudo-spectral linearly implicit scheme for the space-fractional nonlinear Schrödinger equation. Journal of Computational Dynamics, 2019, 6 (2) : 361-383. doi: 10.3934/jcd.2019018 |
[10] |
Andrei Cozma, Christoph Reisinger. Exponential integrability properties of Euler discretization schemes for the Cox--Ingersoll--Ross process. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3359-3377. doi: 10.3934/dcdsb.2016101 |
[11] |
Eva Miranda, Romero Solha. A Poincaré lemma in geometric quantisation. Journal of Geometric Mechanics, 2013, 5 (4) : 473-491. doi: 10.3934/jgm.2013.5.473 |
[12] |
Luis C. García-Naranjo, Mats Vermeeren. Structure preserving discretization of time-reparametrized Hamiltonian systems with application to nonholonomic mechanics. Journal of Computational Dynamics, 2021, 8 (3) : 241-271. doi: 10.3934/jcd.2021011 |
[13] |
Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39 |
[14] |
George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations and Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557 |
[15] |
Stéphane Brull, Pierre Degond, Fabrice Deluzet, Alexandre Mouton. Asymptotic-preserving scheme for a bi-fluid Euler-Lorentz model. Kinetic and Related Models, 2011, 4 (4) : 991-1023. doi: 10.3934/krm.2011.4.991 |
[16] |
Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete and Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61 |
[17] |
Daniele Boffi, Lucia Gastaldi, Sebastian Wolf. Higher-order time-stepping schemes for fluid-structure interaction problems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3807-3830. doi: 10.3934/dcdsb.2020229 |
[18] |
Anthony Bloch, Leonardo Colombo, Fernando Jiménez. The variational discretization of the constrained higher-order Lagrange-Poincaré equations. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 309-344. doi: 10.3934/dcds.2019013 |
[19] |
Casimir Emako, Farah Kanbar, Christian Klingenberg, Min Tang. A criterion for asymptotic preserving schemes of kinetic equations to be uniformly stationary preserving. Kinetic and Related Models, 2021, 14 (5) : 847-866. doi: 10.3934/krm.2021026 |
[20] |
François Gay-Balmaz, Darryl D. Holm. Predicting uncertainty in geometric fluid mechanics. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1229-1242. doi: 10.3934/dcdss.2020071 |
2021 Impact Factor: 0.737
Tools
Metrics
Other articles
by authors
[Back to Top]