December  2019, 11(4): 511-537. doi: 10.3934/jgm.2019025

Variational integrators for anelastic and pseudo-incompressible flows

1. 

Imperial College London, Department of Mathematics, South Kensington Campus, London SW7 2AZ, UK, École Normale Supérieure, Laboratoire de Météorologie Dynamique, 24 Rue Lhomond, Paris, France

2. 

CNRS and École Normale Supérieure, Laboratoire de Météorologie Dynamique, 24 Rue Lhomond, Paris, France

To Darryl Holm, on the occasion of his 70th birthday

Received  November 2017 Revised  August 2019 Published  November 2019

The anelastic and pseudo-incompressible equations are two well-known soundproof approximations of compressible flows useful for both theoretical and numerical analysis in meteorology, atmospheric science, and ocean studies. In this paper, we derive and test structure-preserving numerical schemes for these two systems. The derivations are based on a discrete version of the Euler-Poincaré variational method. This approach relies on a finite dimensional approximation of the (Lie) group of diffeomorphisms that preserve weighted-volume forms. These weights describe the background stratification of the fluid and correspond to the weighted velocity fields for anelastic and pseudo-incompressible approximations. In particular, we identify to these discrete Lie group configurations the associated Lie algebras such that elements of the latter correspond to weighted velocity fields that satisfy the divergence-free conditions for both systems. Defining discrete Lagrangians in terms of these Lie algebras, the discrete equations follow by means of variational principles. Descending from variational principles, the schemes exhibit further a discrete version of Kelvin circulation theorem, are applicable to irregular meshes, and show excellent long term energy behavior. We illustrate the properties of the schemes by performing preliminary test cases.

Citation: Werner Bauer, François Gay-Balmaz. Variational integrators for anelastic and pseudo-incompressible flows. Journal of Geometric Mechanics, 2019, 11 (4) : 511-537. doi: 10.3934/jgm.2019025
References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics. II. Revised and Enlarged, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978.  Google Scholar

[2]

V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, Applied Mathematical Sciences, 125, Springer-Verlag, New York, 1998.  Google Scholar

[3]

W. BauerM. BaumannL. ScheckA. GassmannV. Heuveline and S. C. Jones, Simulation of tropical-cyclone-like vortices in shallow-water ICON-hex using goal-oriented r-adaptivity, Theoretical and Computational Fluid Dynamics, 28 (2014), 107-128.  doi: 10.1007/s00162-013-0303-4.  Google Scholar

[4]

W. Bauer and F. Gay-Balmaz, Towards a variational discretization of compressible fluids: The rotating shallow water equations, Journal of Computational Dynamics, 6 (2019), 1–37, http://dx.doi.org/10.3934/jcd.2019001. doi: 10.3934/jcd.2019001.  Google Scholar

[5]

C. J. Cotter and D. D. Holm, Variational formulations of sound-proof models, Quarterly Journal of the Royal Meteorological Society, 140 (2014), 1966-1973.  doi: 10.1002/qj.2260.  Google Scholar

[6]

M. DesbrunE. S. GawlikF. Gay-Balmaz and V. Zeitlin, Variational discretization for rotating stratified fluids, Discrete Continuous Dynamical Systems-A, 34 (2014), 477-509.  doi: 10.3934/dcds.2014.34.477.  Google Scholar

[7]

D. R. Durran, Improving the anelastic approximation, J. Atmos. Sci, 46 (1989), 1453-1461.  doi: 10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2.  Google Scholar

[8]

D. R. Durran, Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, Texts in Applied Mathematics, 32. Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4757-3081-4.  Google Scholar

[9]

E. S. GawlikP. MullenD. PavlovJ. E. Marsden and M. Desbrun, Geometric, variational discretization of continuum theories, Physica D, 240 (2011), 1724-1760.  doi: 10.1016/j.physd.2011.07.011.  Google Scholar

[10]

D. D. HolmJ. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. in Math., 137 (1998), 1-81.  doi: 10.1006/aima.1998.1721.  Google Scholar

[11]

R. Klein, Asymptotics, structure, and integration of sound-proof atmospheric flow equations, Theor. Comput. Fluid Dyn., 23 (2009), 161-195.  doi: 10.1007/s00162-009-0104-y.  Google Scholar

[12]

H. Lamb, Hydrodynamics, Ch. 309,310, Dover, 1932. Google Scholar

[13]

F. B. Lipps and R. S. Hemler, A scale analysis of deep moist convection and some related numerical calculations, J. Atmos. Sci., 29 (1982), 2192-2210.  doi: 10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2.  Google Scholar

[14]

J. E. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1983), 305-323.  doi: 10.1016/0167-2789(83)90134-3.  Google Scholar

[15]

Y. Ogura and N. A. Phillips, Scale analysis for deep and shallow convection in the atmosphere, J. Atmos. Sci., 19 (1962), 173-179.  doi: 10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2.  Google Scholar

[16]

D. PavlovP. MullenY. TongE. KansoJ. E. Marsden and M. Desbrun, Structure-preserving discretization of incompressible fluids, Physica D, 240 (2010), 443-458.  doi: 10.1016/j.physd.2010.10.012.  Google Scholar

[17]

R. Wilhelmson and Y. Ogura, The pressure perturbation and the numerical modeling of a cloud, J. Atmos. Sci., 29 (1972), 1295-1307.  doi: 10.1175/1520-0469(1972)029<1295:TPPATN>2.0.CO;2.  Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics. II. Revised and Enlarged, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978.  Google Scholar

[2]

V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, Applied Mathematical Sciences, 125, Springer-Verlag, New York, 1998.  Google Scholar

[3]

W. BauerM. BaumannL. ScheckA. GassmannV. Heuveline and S. C. Jones, Simulation of tropical-cyclone-like vortices in shallow-water ICON-hex using goal-oriented r-adaptivity, Theoretical and Computational Fluid Dynamics, 28 (2014), 107-128.  doi: 10.1007/s00162-013-0303-4.  Google Scholar

[4]

W. Bauer and F. Gay-Balmaz, Towards a variational discretization of compressible fluids: The rotating shallow water equations, Journal of Computational Dynamics, 6 (2019), 1–37, http://dx.doi.org/10.3934/jcd.2019001. doi: 10.3934/jcd.2019001.  Google Scholar

[5]

C. J. Cotter and D. D. Holm, Variational formulations of sound-proof models, Quarterly Journal of the Royal Meteorological Society, 140 (2014), 1966-1973.  doi: 10.1002/qj.2260.  Google Scholar

[6]

M. DesbrunE. S. GawlikF. Gay-Balmaz and V. Zeitlin, Variational discretization for rotating stratified fluids, Discrete Continuous Dynamical Systems-A, 34 (2014), 477-509.  doi: 10.3934/dcds.2014.34.477.  Google Scholar

[7]

D. R. Durran, Improving the anelastic approximation, J. Atmos. Sci, 46 (1989), 1453-1461.  doi: 10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2.  Google Scholar

[8]

D. R. Durran, Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, Texts in Applied Mathematics, 32. Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4757-3081-4.  Google Scholar

[9]

E. S. GawlikP. MullenD. PavlovJ. E. Marsden and M. Desbrun, Geometric, variational discretization of continuum theories, Physica D, 240 (2011), 1724-1760.  doi: 10.1016/j.physd.2011.07.011.  Google Scholar

[10]

D. D. HolmJ. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. in Math., 137 (1998), 1-81.  doi: 10.1006/aima.1998.1721.  Google Scholar

[11]

R. Klein, Asymptotics, structure, and integration of sound-proof atmospheric flow equations, Theor. Comput. Fluid Dyn., 23 (2009), 161-195.  doi: 10.1007/s00162-009-0104-y.  Google Scholar

[12]

H. Lamb, Hydrodynamics, Ch. 309,310, Dover, 1932. Google Scholar

[13]

F. B. Lipps and R. S. Hemler, A scale analysis of deep moist convection and some related numerical calculations, J. Atmos. Sci., 29 (1982), 2192-2210.  doi: 10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2.  Google Scholar

[14]

J. E. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1983), 305-323.  doi: 10.1016/0167-2789(83)90134-3.  Google Scholar

[15]

Y. Ogura and N. A. Phillips, Scale analysis for deep and shallow convection in the atmosphere, J. Atmos. Sci., 19 (1962), 173-179.  doi: 10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2.  Google Scholar

[16]

D. PavlovP. MullenY. TongE. KansoJ. E. Marsden and M. Desbrun, Structure-preserving discretization of incompressible fluids, Physica D, 240 (2010), 443-458.  doi: 10.1016/j.physd.2010.10.012.  Google Scholar

[17]

R. Wilhelmson and Y. Ogura, The pressure perturbation and the numerical modeling of a cloud, J. Atmos. Sci., 29 (1972), 1295-1307.  doi: 10.1175/1520-0469(1972)029<1295:TPPATN>2.0.CO;2.  Google Scholar

Figure 5.1.  Notation and indexing conventions for the 2D simplicial mesh
Figure 6.1.  Section of central part of the irregular mesh with $ \max_{{\bf x} \in \Omega}\Delta h({\bf x}) \approx 7 $ for a resolution of $ 2\cdot 384 \times 20 $ triangular cells
Figure 6.2.  Initialization of the Boussinesq scheme by the buoyancy field $ b(x,z,0) $, shown left. Initialization of the anelastic and pseudo-incompressible schemes by the potential temperature field $ \theta(x,z,0) $, shown right
Figure 6.3.  Boussinesq scheme: snapshots of the wave propagation on the regular (left column) and the irregular (right column) mesh
Figure 6.4.  Anelastic scheme: snapshots of the wave propagation on the regular (left column) and the irregular (right column) mesh (snapshots for pseudo-incompressible scheme are very similar, hence not shown)
Figure 6.5.  Boussinesq scheme: relative errors of total energy $ E(t) $ and mass $ M(t) $ for the regular (left column) and the irregular (right column) mesh
Figure 6.6.  Anelastic scheme: relative errors of total energy $ E(t) $ and mass $ M(t) $ for the regular (left column) and the irregular (right column) mesh
Figure 6.7.  Pseudo-incompressible scheme: relative errors of total energy $ E(t) $ and mass $ M(t) $ for the regular (left column) and the irregular (right column) mesh
Figure 6.8.  Boussinesq scheme: frequency spectra for the regular (left block) and the irregular (right block) mesh determined on various points in the domain $ \mathcal{D} $. The position in the panel indicates the corresponding position in $ \mathcal{D} $, e.g. the upper left panel corresponds to a point at the upper left of $ \mathcal{D} $
Figure 6.9.  Anelastic scheme: frequency spectra for the regular (left block) and the irregular (right block) mesh determined on various points in the domain $ \mathcal{D} $ similarly to Fig. 6.8
Figure 6.10.  Pseudo-incompressible scheme: frequency spectra for the regular (left block) and the irregular (right block) mesh determined on various points in the domain $ \mathcal{D} $ similarly to Fig. 6.8
Table 5.1.  Parallel between the continuous and discrete forms for the three models. Note that in the Euler-Poincaré form given in the sixth row of the first column, one has to compute the variational derivatives with respect to the three different weighted pairings in order to get the three models. The last row of the first column presents the continuous equations in a form that corresponds to the discrete forms obtained by variational discretization on 2D simplicial meshes. Note that these expressions are not the standard form of the models given in (2.4), (2.7), (2.8)
Continuous diffeomorphisms Discrete diffeomorphisms
Boussinesq: $ {\rm Diff}_\mu (M) $ Boussinesq: $ {\mathsf{D}}( \mathbb{M} ) $
Anelastic: $ {\rm Diff} _{\bar{ \rho }\mu}(M) $ Anelastic: $ {\mathsf{D}}_{\bar \rho }( \mathbb{M} ) $
Pseudo-incompressible: $ {\rm Diff} _{\bar{ \rho }\bar\theta \mu} (M) $ Pseudo-incompressible: $ {\mathsf{D}}_{\bar \rho \bar\theta }( \mathbb{M} ) $
Lie algebras Discrete Lie algebras
$ \mathfrak{X}_ \mu (M),\;\; \mathfrak{X}_ {\bar{ \rho }\mu} (M), \;\;\mathfrak{X}_{ \bar{ \rho }\bar \theta \mu }(M) $ $ \mathfrak{d} ( \mathbb{M} ), \;\;\mathfrak{d} _ {\bar{ \rho } } ( \mathbb{M} ), \;\;\mathfrak{d} _{ \bar{ \rho }\bar \theta }( \mathbb{M} ) $
Euler-Poincaré form Discrete Euler-Poincaré form
$ \partial _t \frac{\delta \ell}{\delta {\bf{u}} }+\mathit{£} _{\bf{u}} \frac{\delta \ell}{\delta {\bf{u}} } + \frac{\delta \ell}{\delta \theta } {\bf{d}} \theta = - {\bf{d}} p $, Equation (4.12)
Common form for the three models Common discrete form for the three models
Form independent of the mesh
Expression corresponding to the discrete form on 2D simplicial grids Discrete form on 2D simplicial grids
Boussinesq: Discrete Boussinesq:
$ \partial _t {\bf{u}}^\flat + {\bf{i}} _{\bf{u}} {\bf{d}}{\bf{u}}^\flat =- z {\bf{d}} b - {\bf{d}} \tilde p $ Equation (5.2)
Anelastic: Discrete Anelastic:
$ \partial _t {\bf{u}}^\flat + {\bf{i}} _{\bf{u}} {\bf{d}}{\bf{u}}^\flat =c_p \bar \pi {\bf{d}} \theta - {\bf{d}} \tilde p $ Equation (5.6)
Pseudo-incompressible: Discrete Pseudo-incompressible:
$ \partial _t \Big( \frac{ {\bf{u}}^\flat}{ \theta } \Big) + \frac{1}{ \theta } {\bf{i}} _{\bf{u}} {\bf{d}}{\bf{u}}^\flat =-\Big(gz- \frac{1}{2} | {\bf{u}} | ^2 \Big)\frac{{\bf{d}} \theta}{\theta ^2 } - {\bf{d}} \tilde p $ Equation (5.8)
Continuous diffeomorphisms Discrete diffeomorphisms
Boussinesq: $ {\rm Diff}_\mu (M) $ Boussinesq: $ {\mathsf{D}}( \mathbb{M} ) $
Anelastic: $ {\rm Diff} _{\bar{ \rho }\mu}(M) $ Anelastic: $ {\mathsf{D}}_{\bar \rho }( \mathbb{M} ) $
Pseudo-incompressible: $ {\rm Diff} _{\bar{ \rho }\bar\theta \mu} (M) $ Pseudo-incompressible: $ {\mathsf{D}}_{\bar \rho \bar\theta }( \mathbb{M} ) $
Lie algebras Discrete Lie algebras
$ \mathfrak{X}_ \mu (M),\;\; \mathfrak{X}_ {\bar{ \rho }\mu} (M), \;\;\mathfrak{X}_{ \bar{ \rho }\bar \theta \mu }(M) $ $ \mathfrak{d} ( \mathbb{M} ), \;\;\mathfrak{d} _ {\bar{ \rho } } ( \mathbb{M} ), \;\;\mathfrak{d} _{ \bar{ \rho }\bar \theta }( \mathbb{M} ) $
Euler-Poincaré form Discrete Euler-Poincaré form
$ \partial _t \frac{\delta \ell}{\delta {\bf{u}} }+\mathit{£} _{\bf{u}} \frac{\delta \ell}{\delta {\bf{u}} } + \frac{\delta \ell}{\delta \theta } {\bf{d}} \theta = - {\bf{d}} p $, Equation (4.12)
Common form for the three models Common discrete form for the three models
Form independent of the mesh
Expression corresponding to the discrete form on 2D simplicial grids Discrete form on 2D simplicial grids
Boussinesq: Discrete Boussinesq:
$ \partial _t {\bf{u}}^\flat + {\bf{i}} _{\bf{u}} {\bf{d}}{\bf{u}}^\flat =- z {\bf{d}} b - {\bf{d}} \tilde p $ Equation (5.2)
Anelastic: Discrete Anelastic:
$ \partial _t {\bf{u}}^\flat + {\bf{i}} _{\bf{u}} {\bf{d}}{\bf{u}}^\flat =c_p \bar \pi {\bf{d}} \theta - {\bf{d}} \tilde p $ Equation (5.6)
Pseudo-incompressible: Discrete Pseudo-incompressible:
$ \partial _t \Big( \frac{ {\bf{u}}^\flat}{ \theta } \Big) + \frac{1}{ \theta } {\bf{i}} _{\bf{u}} {\bf{d}}{\bf{u}}^\flat =-\Big(gz- \frac{1}{2} | {\bf{u}} | ^2 \Big)\frac{{\bf{d}} \theta}{\theta ^2 } - {\bf{d}} \tilde p $ Equation (5.8)
[1]

Qi Hong, Jialing Wang, Yuezheng Gong. Second-order linear structure-preserving modified finite volume schemes for the regularized long wave equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6445-6464. doi: 10.3934/dcdsb.2019146

[2]

Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093

[3]

Jeffrey K. Lawson, Tanya Schmah, Cristina Stoica. Euler-Poincaré reduction for systems with configuration space isotropy. Journal of Geometric Mechanics, 2011, 3 (2) : 261-275. doi: 10.3934/jgm.2011.3.261

[4]

Emanuel-Ciprian Cismas. Euler-Poincaré-Arnold equations on semi-direct products II. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5993-6022. doi: 10.3934/dcds.2016063

[5]

Andrei Cozma, Christoph Reisinger. Exponential integrability properties of Euler discretization schemes for the Cox--Ingersoll--Ross process. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3359-3377. doi: 10.3934/dcdsb.2016101

[6]

Eva Miranda, Romero Solha. A Poincaré lemma in geometric quantisation. Journal of Geometric Mechanics, 2013, 5 (4) : 473-491. doi: 10.3934/jgm.2013.5.473

[7]

Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39

[8]

George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations & Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557

[9]

Stéphane Brull, Pierre Degond, Fabrice Deluzet, Alexandre Mouton. Asymptotic-preserving scheme for a bi-fluid Euler-Lorentz model. Kinetic & Related Models, 2011, 4 (4) : 991-1023. doi: 10.3934/krm.2011.4.991

[10]

Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61

[11]

Anthony Bloch, Leonardo Colombo, Fernando Jiménez. The variational discretization of the constrained higher-order Lagrange-Poincaré equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 309-344. doi: 10.3934/dcds.2019013

[12]

François Gay-Balmaz, Darryl D. Holm. Predicting uncertainty in geometric fluid mechanics. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-14. doi: 10.3934/dcdss.2020071

[13]

Zoltán Horváth, Yunfei Song, Tamás Terlaky. Steplength thresholds for invariance preserving of discretization methods of dynamical systems on a polyhedron. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2997-3013. doi: 10.3934/dcds.2015.35.2997

[14]

Vyacheslav M. Abramov, Fima C. Klebaner, Robert Sh. Lipster. The Euler-Maruyama approximations for the CEV model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 1-14. doi: 10.3934/dcdsb.2011.16.1

[15]

Chaolang Hu, Xiaoming He, Tao Lü. Euler-Maclaurin expansions and approximations of hypersingular integrals. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1355-1375. doi: 10.3934/dcdsb.2015.20.1355

[16]

Werner Bauer, François Gay-Balmaz. Towards a geometric variational discretization of compressible fluids: The rotating shallow water equations. Journal of Computational Dynamics, 2019, 6 (1) : 1-37. doi: 10.3934/jcd.2019001

[17]

Philipp Fuchs, Ansgar Jüngel, Max von Renesse. On the Lagrangian structure of quantum fluid models. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1375-1396. doi: 10.3934/dcds.2014.34.1375

[18]

Jie Shen, Xiaofeng Yang. Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 663-676. doi: 10.3934/dcdsb.2007.8.663

[19]

Zihui Liu, Xiangyong Zeng. The geometric structure of relative one-weight codes. Advances in Mathematics of Communications, 2016, 10 (2) : 367-377. doi: 10.3934/amc.2016011

[20]

Nikolaos Halidias. Construction of positivity preserving numerical schemes for some multidimensional stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 153-160. doi: 10.3934/dcdsb.2015.20.153

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (15)
  • HTML views (18)
  • Cited by (0)

Other articles
by authors

[Back to Top]