December  2019, 11(4): 539-552. doi: 10.3934/jgm.2019026

The problem of Lagrange on principal bundles under a subgroup of symmetries

1. 

Dept. Álgebra, Geometría y Topología, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, 28040 Madrid, Spain

2. 

Dept. Matemática, Universidad de Salamanca, 37008 Salamanca, Spain and Real Academia de Ciencias, 28004 Madrid, Spain

We dedicate this work to our friend Darryl D. Holm on the occasion of his 70th birthday.

Received  April 2018 Revised  May 2019 Published  November 2019

Fund Project: This work has been partially supported by MICINN (Spain) under projects MTM2015-63612-P and PGC2018-098321-B-I00, as well as Consejería de Educación, Junta de Castilla-León (Spain) under project SA090G19.

Given a Lagrangian density $ L{\bf{v}} $ defined on the $ 1 $-jet extension $ J^1P $ of a principal $ G $-bundle $ \pi \colon P\to M $ invariant under the action of a closed subgroup $ H\subset G $, its Euler-Poincaré reduction in $ J^1P/H = C(P)\times_M P/H $ ($ C(P)\to M $ being the bundle of connections of $ P $ and $ P/H\to M $ being the bundle of $ H $-structures) induces a Lagrange problem defined in $ J^1(C(P)\times_M P/H) $ by a reduced Lagrangian density $ l{\bf{v}} $ together with the constraints $ {\rm{Curv}}\sigma = 0, \nabla ^\sigma \bar{s} = 0 $, for $ \sigma $ and $ \bar{s} $ sections of $ C(P) $ and $ P/H $ respectively. We prove that the critical section of this problem are solutions of the Euler-Poincaré equations of the reduced problem. We also study the Hamilton-Cartan formulation of this Lagrange problem, where we find some common points with Pontryagin's approach to optimal control problems for $ \sigma $ as control variables and $ \bar{s} $ as dynamical variables. Finally, the theory is illustrated with the case of affine principal fiber bundles and its application to the modelisation of the molecular strands on a Lorentzian plane.

Citation: Marco Castrillón López, Pedro Luis García Pérez. The problem of Lagrange on principal bundles under a subgroup of symmetries. Journal of Geometric Mechanics, 2019, 11 (4) : 539-552. doi: 10.3934/jgm.2019026
References:
[1]

E. Bibbona, L. Fatibene and M. Francaviglia, Chetaev versus vakonomic prescriptions in constrained field theories with parametrized variational calculus, J. Math. Phys., 48 (2007), 032903, 14 pp. doi: 10.1063/1.2709848.  Google Scholar

[2]

A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, 24. Systems and Control. Springer-Verlag, New York, 2003. doi: 10.1007/b97376.  Google Scholar

[3]

M. CastrillónP. L. García and C. Rodrigo, Euler-Poincaré reduction in principal fiber bundles and the problem of Lagrange, Diff. Geom. Appl., 25 (2007), 585-593.  doi: 10.1016/j.difgeo.2007.06.007.  Google Scholar

[4]

M. CastrillónP. L. García and C. Rodrigo, Euler-Poincaré reduction in principal bundles by a subgroup of the structure group, J. Geom. Phys, 74 (2013), 352-369.  doi: 10.1016/j.geomphys.2013.08.008.  Google Scholar

[5]

M. Castrillón and P. L. García, Euler-Poincaré reduction by a subgroup of the symmetries as an optimal control problem, Geometry, Algebra and Applications: From Mechanics to Cryptography, Springer Proc. Math. Stat., Springer, [Cham], 161 (2016), 49-63.  doi: 10.1007/978-3-319-32085-4_5.  Google Scholar

[6]

D. C. P. EllisF. Gay-BalmazD. D. HolmV. Putkaradze and T. S. Ratiu, Symmetry reduced dynamics of charged molecular strands, Arch. Ration. Mech. Anal., 197 (2010), 811-902.  doi: 10.1007/s00205-010-0305-y.  Google Scholar

[7]

P. L. García, The Poincaré-Cartan invariant in the calculus of variations, Symp. Math., Academic Press, London, 14 (1974), 219-249.   Google Scholar

[8]

P. L. García, Sobre la Regularidad en los Problemas de Lagrange y de Control Óptimo, El legado matemático de Juan Bautista Sancho Guimerá, Ediciones de la Universidad de Salamanca, 2015, 51–74. ISBN 978-84-9012-574-8. Google Scholar

[9]

P. L. GarcíaA. García and C. Rodrigo, Cartan forms for first order constrained variational problems, J. Geom. Phys., 56 (2006), 571-610.  doi: 10.1016/j.geomphys.2005.04.002.  Google Scholar

[10]

J.-L. Koszul, Lectures on Fibers Bundles and Differential Geometry, Lect. in Math. No. 20, Tata Institute of Fundamental Research, Bombay, 1965.  Google Scholar

show all references

References:
[1]

E. Bibbona, L. Fatibene and M. Francaviglia, Chetaev versus vakonomic prescriptions in constrained field theories with parametrized variational calculus, J. Math. Phys., 48 (2007), 032903, 14 pp. doi: 10.1063/1.2709848.  Google Scholar

[2]

A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, 24. Systems and Control. Springer-Verlag, New York, 2003. doi: 10.1007/b97376.  Google Scholar

[3]

M. CastrillónP. L. García and C. Rodrigo, Euler-Poincaré reduction in principal fiber bundles and the problem of Lagrange, Diff. Geom. Appl., 25 (2007), 585-593.  doi: 10.1016/j.difgeo.2007.06.007.  Google Scholar

[4]

M. CastrillónP. L. García and C. Rodrigo, Euler-Poincaré reduction in principal bundles by a subgroup of the structure group, J. Geom. Phys, 74 (2013), 352-369.  doi: 10.1016/j.geomphys.2013.08.008.  Google Scholar

[5]

M. Castrillón and P. L. García, Euler-Poincaré reduction by a subgroup of the symmetries as an optimal control problem, Geometry, Algebra and Applications: From Mechanics to Cryptography, Springer Proc. Math. Stat., Springer, [Cham], 161 (2016), 49-63.  doi: 10.1007/978-3-319-32085-4_5.  Google Scholar

[6]

D. C. P. EllisF. Gay-BalmazD. D. HolmV. Putkaradze and T. S. Ratiu, Symmetry reduced dynamics of charged molecular strands, Arch. Ration. Mech. Anal., 197 (2010), 811-902.  doi: 10.1007/s00205-010-0305-y.  Google Scholar

[7]

P. L. García, The Poincaré-Cartan invariant in the calculus of variations, Symp. Math., Academic Press, London, 14 (1974), 219-249.   Google Scholar

[8]

P. L. García, Sobre la Regularidad en los Problemas de Lagrange y de Control Óptimo, El legado matemático de Juan Bautista Sancho Guimerá, Ediciones de la Universidad de Salamanca, 2015, 51–74. ISBN 978-84-9012-574-8. Google Scholar

[9]

P. L. GarcíaA. García and C. Rodrigo, Cartan forms for first order constrained variational problems, J. Geom. Phys., 56 (2006), 571-610.  doi: 10.1016/j.geomphys.2005.04.002.  Google Scholar

[10]

J.-L. Koszul, Lectures on Fibers Bundles and Differential Geometry, Lect. in Math. No. 20, Tata Institute of Fundamental Research, Bombay, 1965.  Google Scholar

[1]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[2]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[3]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[4]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[5]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[6]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[7]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[8]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[9]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[10]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[11]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[12]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[13]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[14]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[15]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (109)
  • HTML views (119)
  • Cited by (0)

[Back to Top]