December  2019, 11(4): 601-619. doi: 10.3934/jgm.2019030

Generalized point vortex dynamics on $ \mathbb{CP} ^2 $

Dept of Mathematics, University of Manchester, Manchester M13 9PL, UK

* Corresponding author

Dedicated to Darryl Holm on the occasion of his 70th birthday

Received  April 2018 Revised  June 2019 Published  November 2019

This is the second of two companion papers. We describe a generalization of the point vortex system on surfaces to a Hamiltonian dynamical system consisting of two or three points on complex projective space $ \mathbb{CP} ^2 $ interacting via a Hamiltonian function depending only on the distance between the points. The system has symmetry group SU(3). The first paper describes all possible momentum values for such systems, and here we apply methods of symplectic reduction and geometric mechanics to analyze the possible relative equilibria of such interacting generalized vortices.

The different types of polytope depend on the values of the 'vortex strengths', which are manifested as coefficients of the symplectic forms on the copies of $ \mathbb{CP} ^2 $. We show that the reduced space for this Hamiltonian action for 3 vortices is generically a 2-sphere, and proceed to describe the reduced dynamics under simple hypotheses on the type of Hamiltonian interaction. The other non-trivial reduced spaces are topological spheres with isolated singular points. For 2 generalized vortices, the reduced spaces are just points, and the motion is governed by a collective Hamiltonian, whereas for 3 the reduced spaces are of dimension at most 2. In both cases the system will be completely integrable in the non-abelian sense.

Citation: James Montaldi, Amna Shaddad. Generalized point vortex dynamics on $ \mathbb{CP} ^2 $. Journal of Geometric Mechanics, 2019, 11 (4) : 601-619. doi: 10.3934/jgm.2019030
References:
[1]

H. Aref, Point vortex dynamics: A classical mathematics playground, J. Math. Phys., 48 (2007), 065401, 23 pp. doi: 10.1063/1.2425103.  Google Scholar

[2]

H. ArefP. K. NewtonM. A. StremlerT. Tokieda and D. L. Vainchtein, Vortex crystals, Adv. in Appl. Mech., 39 (2003), 1-79.   Google Scholar

[3]

S. Boatto and J. Koiller, Vortices on closed surfaces, Geometry, Mechanics and Dynamics: The Legacy of Jerry Marsden, Fields Inst. Commun., Springer, 73 (2015), 185-237.  doi: 10.1007/978-1-4939-2441-7_10.  Google Scholar

[4]

A. V. BolsinovA. V. Borisov and I. S. Mamaev, Lie algebras in vortex dynamics and celestial mechanics. IV, Regular and Chaotic Dynamics, 4 (1999), 23-50.  doi: 10.1070/rd1999v004n01ABEH000097.  Google Scholar

[5]

P.-L. BuonoF. Laurent-Polz and J. Montaldi, Symmetric Hamiltonian bifurcations, London Math. Soc. Lecture Note Ser., Geometric mechanics and symmetry, Cambridge Univ. Press, Cambridge, 306 (2005), 357-402.  doi: 10.1017/CBO9780511526367.007.  Google Scholar

[6]

D. G. Dritschel and S. Boatto, The motion of point vortices on closed surfaces, Proc. R. Soc. A, 471 (2015), 20140890, 25 pp, http://dx.doi.org/10.1098/rspa.2014.0890. doi: 10.1098/rspa.2014.0890.  Google Scholar

[7]

J. J. Duistermaat and G. J. Heckman, On the variation in the cohomology of the sympleetic form of the reduced phase space, Invent. Math., 69 (1982), 259-268.  doi: 10.1007/BF01399506.  Google Scholar

[8] V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge University Press, Cambridge, 1984.   Google Scholar
[9]

V. Guillemin and S. Sternberg, Birational equivalence in the symplectic category, Invent. Math., 97 (1989), 485-522.  doi: 10.1007/BF01388888.  Google Scholar

[10]

R. Kidambi and P. K. Newton, Motion of three point vortices on a sphere, Physica D, 116 (1998), 143-175.  doi: 10.1016/S0167-2789(97)00236-4.  Google Scholar

[11] F. C. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical Notes, 31. Princeton University Press, Princeton, NJ, 1984.  doi: 10.1007/BF01145470.  Google Scholar
[12]

F. C. Kirwan, The topology of reduced phase spaces of the motion of vortices on a sphere, Phy. D, 30 (1988), 99-123.  doi: 10.1016/0167-2789(88)90100-5.  Google Scholar

[13]

F. Laurent-PolzJ. Montaldi and M. Roberts, Point vortices on the sphere: Stability of symmetric relative equilibria, J. Geom. Mech., 3 (2011), 439-486.  doi: 10.3934/jgm.2011.3.439.  Google Scholar

[14]

C. C. Lim, Existence of Kolmogorov-Arnold-Moser tori in the phase-space of lattice vortex systems, Z. Angew. Math. Phys., 41 (1990), 227-244.   Google Scholar

[15]

C. LimJ. Montaldi and M. Roberts, Relative equilibria of point vortices on the sphere, Phys. D., 148 (2001), 97-135.  doi: 10.1016/S0167-2789(00)00167-6.  Google Scholar

[16]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathematics, 17. Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-2682-6.  Google Scholar

[17]

J. Milnor, Morse Theory, Annals of Mathematics Studies, No. 51 Princeton University Press, Princeton, N.J. 1963.  Google Scholar

[18]

J. Montaldi, Persistence and stability of relative equilibria, Nonlinearity, 10 (1997), 449-466.  doi: 10.1088/0951-7715/10/2/009.  Google Scholar

[19]

J. Montaldi, Relative equilibria and conserved quantities in symmetric Hamiltonian systems, Peyresq Lectures on Nonlinear Phenomena, World Sci. Publ., River Edge, NJ, (2000), 239–280. doi: 10.1142/9789812792778_0008.  Google Scholar

[20]

J. Montaldi and C. Nava-Gaxiola, Point vortices on the hyperbolic plane, J. Math. Phys., 55 (2014), 102702, 14 pp, http://dx.doi.org/10.1063/1.4897210. doi: 10.1063/1.4897210.  Google Scholar

[21]

J. Montaldi and M. Roberts, Stratification of the momentum map, in preparation. Google Scholar

[22]

J. MontaldiA. Soulière and T. Tokieda, Vortex dynamics on cylinders, SIAM J. on Appl. Dyn. Sys., 2 (2003), 417-430.  doi: 10.1137/S1111111102415569.  Google Scholar

[23]

J. Montaldi and A. Shaddad, Non-Abelian momentum polytopes for products of $\mathbb{CP}^2$, J. Geom. Mechanics, (this volume). Google Scholar

[24]

J. Montaldi and T. Tokieda, Openness of momentum maps and persistence of extremal relative equilibria, Topology, 42 (2003), 833-844.  doi: 10.1016/S0040-9383(02)00047-2.  Google Scholar

[25]

P. K. Newton, The $N$-Vortex Problem: Analytical Techniques, Applied Mathematical Sciences, 145. Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4684-9290-3.  Google Scholar

[26]

J.-P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction, Progress in Mathematics, 222. Birkhäuser Boston, Inc., Boston, MA, 2004. doi: 10.1007/978-1-4757-3811-7.  Google Scholar

[27]

S. Pekarsky and J. E. Marsden, Point vortices on a sphere: Stability of relative equilibria, J. Math. Phys., 39 (1998), 5894-5907.  doi: 10.1063/1.532602.  Google Scholar

[28]

A. R. RodriguesC. Castilho and J. Koiller, Vortex dynamics on a triaxial ellipsoid and Kimura's conjecture, J. Geom. Mech., 10 (2018), 189-208.  doi: 10.3934/jgm.2018007.  Google Scholar

[29]

T. Sakajo and Y. Shimizu, Point vortex interactions on a toroidal surface, k Proc. R. Soc. A, 472 (2016), 20160271, 24 pp, http://dx.doi.org/10.1098/rspa.2016.0271. doi: 10.1098/rspa.2016.0271.  Google Scholar

[30]

A. Shaddad, The Classification and Dynamics of the Momentum Polytopes of the SU(3) Action on Points in the Complex Projective Plane with an Application to Point Vortices, Ph.D. thesis, University of Manchester, 2018. Google Scholar

[31]

R. Sjamaar, Convexity properties of the moment mapping re-examined, Advances in Math., 138 (1998), 46-91.  doi: 10.1006/aima.1998.1739.  Google Scholar

show all references

References:
[1]

H. Aref, Point vortex dynamics: A classical mathematics playground, J. Math. Phys., 48 (2007), 065401, 23 pp. doi: 10.1063/1.2425103.  Google Scholar

[2]

H. ArefP. K. NewtonM. A. StremlerT. Tokieda and D. L. Vainchtein, Vortex crystals, Adv. in Appl. Mech., 39 (2003), 1-79.   Google Scholar

[3]

S. Boatto and J. Koiller, Vortices on closed surfaces, Geometry, Mechanics and Dynamics: The Legacy of Jerry Marsden, Fields Inst. Commun., Springer, 73 (2015), 185-237.  doi: 10.1007/978-1-4939-2441-7_10.  Google Scholar

[4]

A. V. BolsinovA. V. Borisov and I. S. Mamaev, Lie algebras in vortex dynamics and celestial mechanics. IV, Regular and Chaotic Dynamics, 4 (1999), 23-50.  doi: 10.1070/rd1999v004n01ABEH000097.  Google Scholar

[5]

P.-L. BuonoF. Laurent-Polz and J. Montaldi, Symmetric Hamiltonian bifurcations, London Math. Soc. Lecture Note Ser., Geometric mechanics and symmetry, Cambridge Univ. Press, Cambridge, 306 (2005), 357-402.  doi: 10.1017/CBO9780511526367.007.  Google Scholar

[6]

D. G. Dritschel and S. Boatto, The motion of point vortices on closed surfaces, Proc. R. Soc. A, 471 (2015), 20140890, 25 pp, http://dx.doi.org/10.1098/rspa.2014.0890. doi: 10.1098/rspa.2014.0890.  Google Scholar

[7]

J. J. Duistermaat and G. J. Heckman, On the variation in the cohomology of the sympleetic form of the reduced phase space, Invent. Math., 69 (1982), 259-268.  doi: 10.1007/BF01399506.  Google Scholar

[8] V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge University Press, Cambridge, 1984.   Google Scholar
[9]

V. Guillemin and S. Sternberg, Birational equivalence in the symplectic category, Invent. Math., 97 (1989), 485-522.  doi: 10.1007/BF01388888.  Google Scholar

[10]

R. Kidambi and P. K. Newton, Motion of three point vortices on a sphere, Physica D, 116 (1998), 143-175.  doi: 10.1016/S0167-2789(97)00236-4.  Google Scholar

[11] F. C. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical Notes, 31. Princeton University Press, Princeton, NJ, 1984.  doi: 10.1007/BF01145470.  Google Scholar
[12]

F. C. Kirwan, The topology of reduced phase spaces of the motion of vortices on a sphere, Phy. D, 30 (1988), 99-123.  doi: 10.1016/0167-2789(88)90100-5.  Google Scholar

[13]

F. Laurent-PolzJ. Montaldi and M. Roberts, Point vortices on the sphere: Stability of symmetric relative equilibria, J. Geom. Mech., 3 (2011), 439-486.  doi: 10.3934/jgm.2011.3.439.  Google Scholar

[14]

C. C. Lim, Existence of Kolmogorov-Arnold-Moser tori in the phase-space of lattice vortex systems, Z. Angew. Math. Phys., 41 (1990), 227-244.   Google Scholar

[15]

C. LimJ. Montaldi and M. Roberts, Relative equilibria of point vortices on the sphere, Phys. D., 148 (2001), 97-135.  doi: 10.1016/S0167-2789(00)00167-6.  Google Scholar

[16]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathematics, 17. Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-2682-6.  Google Scholar

[17]

J. Milnor, Morse Theory, Annals of Mathematics Studies, No. 51 Princeton University Press, Princeton, N.J. 1963.  Google Scholar

[18]

J. Montaldi, Persistence and stability of relative equilibria, Nonlinearity, 10 (1997), 449-466.  doi: 10.1088/0951-7715/10/2/009.  Google Scholar

[19]

J. Montaldi, Relative equilibria and conserved quantities in symmetric Hamiltonian systems, Peyresq Lectures on Nonlinear Phenomena, World Sci. Publ., River Edge, NJ, (2000), 239–280. doi: 10.1142/9789812792778_0008.  Google Scholar

[20]

J. Montaldi and C. Nava-Gaxiola, Point vortices on the hyperbolic plane, J. Math. Phys., 55 (2014), 102702, 14 pp, http://dx.doi.org/10.1063/1.4897210. doi: 10.1063/1.4897210.  Google Scholar

[21]

J. Montaldi and M. Roberts, Stratification of the momentum map, in preparation. Google Scholar

[22]

J. MontaldiA. Soulière and T. Tokieda, Vortex dynamics on cylinders, SIAM J. on Appl. Dyn. Sys., 2 (2003), 417-430.  doi: 10.1137/S1111111102415569.  Google Scholar

[23]

J. Montaldi and A. Shaddad, Non-Abelian momentum polytopes for products of $\mathbb{CP}^2$, J. Geom. Mechanics, (this volume). Google Scholar

[24]

J. Montaldi and T. Tokieda, Openness of momentum maps and persistence of extremal relative equilibria, Topology, 42 (2003), 833-844.  doi: 10.1016/S0040-9383(02)00047-2.  Google Scholar

[25]

P. K. Newton, The $N$-Vortex Problem: Analytical Techniques, Applied Mathematical Sciences, 145. Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4684-9290-3.  Google Scholar

[26]

J.-P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction, Progress in Mathematics, 222. Birkhäuser Boston, Inc., Boston, MA, 2004. doi: 10.1007/978-1-4757-3811-7.  Google Scholar

[27]

S. Pekarsky and J. E. Marsden, Point vortices on a sphere: Stability of relative equilibria, J. Math. Phys., 39 (1998), 5894-5907.  doi: 10.1063/1.532602.  Google Scholar

[28]

A. R. RodriguesC. Castilho and J. Koiller, Vortex dynamics on a triaxial ellipsoid and Kimura's conjecture, J. Geom. Mech., 10 (2018), 189-208.  doi: 10.3934/jgm.2018007.  Google Scholar

[29]

T. Sakajo and Y. Shimizu, Point vortex interactions on a toroidal surface, k Proc. R. Soc. A, 472 (2016), 20160271, 24 pp, http://dx.doi.org/10.1098/rspa.2016.0271. doi: 10.1098/rspa.2016.0271.  Google Scholar

[30]

A. Shaddad, The Classification and Dynamics of the Momentum Polytopes of the SU(3) Action on Points in the Complex Projective Plane with an Application to Point Vortices, Ph.D. thesis, University of Manchester, 2018. Google Scholar

[31]

R. Sjamaar, Convexity properties of the moment mapping re-examined, Advances in Math., 138 (1998), 46-91.  doi: 10.1006/aima.1998.1739.  Google Scholar

Figure 3.  Possible non-trivial reduced spaces for the 3-vortex problem
Figure 2.  This figure and associated table show the orbit type stratification of $ M=\mathbb{CP}^2\times\mathbb{CP}^2\times\mathbb{CP}^2 $; the table in (ⅱ) shows the geometry corresponding to the different stabilizers, while in (i) we see the adjacencies of the strata. The (a) and (b) refer in each case to two different geometry types for the same stabilizer, and hence different components of the corresponding fixed point space. (Note that strata marked with (a) contain the vertex $ a $ in their image, the strata marked with (b) contain the vertex $ b $ in their image, and the image of the $ \mathbb{T}^2_{(c)} $-strata consists of the points $ c_j $.)
Figure 4.  The generic momentum polytopes from [23], showing the type of reduced space. The salmon coloured regions (including plain boundary points) are where the reduced space is a smooth 2-sphere, the black lines or dots are where it is a once-pointed 2-sphere, and the thick dashed lines represent where the reduced space is a point.
Figure 1.  Three of the generic momentum polytopes from [23]. They illustrate in particular how the points $ a $ and $ b $ are always vertices, but the $ c_j $ may or may not be vertices of the polytope
Figure 5.  The roots $\alpha_1, \alpha_2, \alpha_3$ and positive Weyl chamber of $SU(3)$, see 23
Figure 6.  The green lines are contours of constant volume of reduced space; see Remark 3 and Fig. 4 for the key
Table 1.  The allowed velocity spaces for relative equilibria for 2 vortices on $ \mathbb{CP}^2 $ (allowing for collisions).
$ \Gamma_1=\Gamma_2 $ equal: $ G_x=U(2)=G_\mu $ $R_0\simeq(\mathfrak{u}(2)/\mathfrak{u}(2))^{U(2)}=\{0\}$
orthogonal: $ G_x=\mathbb{T}^2 $, $ G_\mu= $U(2) $R_0\simeq(\mathfrak{u}(2)/\mathfrak{t}^2)^{\mathbb{T}^2}=\{0\}$
generic: $ G_x=U(1) $, $ G_\mu=\mathbb{T}^2 $ $ R_0\simeq(\mathfrak{t}^2/\mathfrak{u}(1))^{U(1)}=\mathbb{R} $
$ \Gamma_1=-\Gamma_2 $ equal: $ G_x=U(2) $, $ G_\mu=SU(3) $ $ R_0\simeq(\mathfrak{su}(3)/\mathfrak{u}(2))^{U(2)}=\left\{ 0 \right\} $
orthogonal: $ G_x=G_\mu=\mathbb{T}^2 $ $ R_0\simeq(\mathfrak{t}^2/\mathfrak{t}^2)^{\mathbb{T}^2}=\left\{ 0 \right\} $
generic: $ G_x=U(1) $, $ G_\mu=\mathbb{T}^2 $ $ R_0\simeq(\mathfrak{t}^2/\mathfrak{u}(1))^{U(1)}=\mathbb{R} $
Otherwise equal: $ G_x=G_\mu=U(2) $ $ R_0 = \left\{ 0 \right\} $
orthogonal: $ G_x=G_\mu=\mathbb{T}^2 $ $ R_0 = \left\{ 0 \right\} $
generic: $ G_x=U(1) $, $ G_\mu=\mathbb{T}^2 $ $ R_0\simeq(\mathfrak{t}^2/\mathfrak{u}(1))^{U(1)}=\mathbb{R} $
$ \Gamma_1=\Gamma_2 $ equal: $ G_x=U(2)=G_\mu $ $R_0\simeq(\mathfrak{u}(2)/\mathfrak{u}(2))^{U(2)}=\{0\}$
orthogonal: $ G_x=\mathbb{T}^2 $, $ G_\mu= $U(2) $R_0\simeq(\mathfrak{u}(2)/\mathfrak{t}^2)^{\mathbb{T}^2}=\{0\}$
generic: $ G_x=U(1) $, $ G_\mu=\mathbb{T}^2 $ $ R_0\simeq(\mathfrak{t}^2/\mathfrak{u}(1))^{U(1)}=\mathbb{R} $
$ \Gamma_1=-\Gamma_2 $ equal: $ G_x=U(2) $, $ G_\mu=SU(3) $ $ R_0\simeq(\mathfrak{su}(3)/\mathfrak{u}(2))^{U(2)}=\left\{ 0 \right\} $
orthogonal: $ G_x=G_\mu=\mathbb{T}^2 $ $ R_0\simeq(\mathfrak{t}^2/\mathfrak{t}^2)^{\mathbb{T}^2}=\left\{ 0 \right\} $
generic: $ G_x=U(1) $, $ G_\mu=\mathbb{T}^2 $ $ R_0\simeq(\mathfrak{t}^2/\mathfrak{u}(1))^{U(1)}=\mathbb{R} $
Otherwise equal: $ G_x=G_\mu=U(2) $ $ R_0 = \left\{ 0 \right\} $
orthogonal: $ G_x=G_\mu=\mathbb{T}^2 $ $ R_0 = \left\{ 0 \right\} $
generic: $ G_x=U(1) $, $ G_\mu=\mathbb{T}^2 $ $ R_0\simeq(\mathfrak{t}^2/\mathfrak{u}(1))^{U(1)}=\mathbb{R} $
Table 2.  The allowed velocity spaces for relative equilibria for 3 vortices on $ \mathbb{CP}^2 $ (allowing for collisions), and for generic $ \Gamma_j $. See text for explanations.
$ \mu\in $ Wall: $ G_\mu=U(2) $
triple point $ G_x=U(2) $ $ R_0\simeq(\mathfrak{u}(2)/\mathfrak{u}(2))^{U(2)}=\left\{ 0 \right\} $
other vertices $ G_x=U(1) $ $ R_0\simeq(\mathfrak{u}(2)/\mathfrak{u}(1))^{U(1)} =\mathbb{R}^3 $
generic $ G_x=\bf{1} $ $ R_0\simeq\mathfrak{u}(2) =\mathbb{R}^4 $
$\mu\not\in$ Wall: $G_\mu=\mathbb{T}^2$
double point$G_x=U(1)$$R_0\simeq(\tt^2/\mathfrak{u}(1))^{U(1)}=\mathbb{R}$
double+orthogonal$G_x=\mathbb{T}^2$$R_0\simeq(\mathfrak{t}^2/\tt^2)^{\mathbb{T}^2}=\{0\}$
distinct coplanar$G_x=U(1)$$R_0\simeq(\mathfrak{t}^2/\mathfrak{u}(1))^{U(1)}=\mathbb{R}$
totally orthogonal$G_x=\mathbb{T}^2$$R_0\simeq(\mathfrak{t}^2/\tt^2)^{\mathbb{T}^2}=\{0\}$
semi-orthogonal$G_x=U(1)$$R_0\simeq(\mathfrak{t}^2/\mathfrak{u}(1))^{U(1)}=\mathbb{R}$
generic$G_x=\bf{1}$$R_0\simeq\mathfrak{t}^2=\mathbb{R}^2$
$ \mu\in $ Wall: $ G_\mu=U(2) $
triple point $ G_x=U(2) $ $ R_0\simeq(\mathfrak{u}(2)/\mathfrak{u}(2))^{U(2)}=\left\{ 0 \right\} $
other vertices $ G_x=U(1) $ $ R_0\simeq(\mathfrak{u}(2)/\mathfrak{u}(1))^{U(1)} =\mathbb{R}^3 $
generic $ G_x=\bf{1} $ $ R_0\simeq\mathfrak{u}(2) =\mathbb{R}^4 $
$\mu\not\in$ Wall: $G_\mu=\mathbb{T}^2$
double point$G_x=U(1)$$R_0\simeq(\tt^2/\mathfrak{u}(1))^{U(1)}=\mathbb{R}$
double+orthogonal$G_x=\mathbb{T}^2$$R_0\simeq(\mathfrak{t}^2/\tt^2)^{\mathbb{T}^2}=\{0\}$
distinct coplanar$G_x=U(1)$$R_0\simeq(\mathfrak{t}^2/\mathfrak{u}(1))^{U(1)}=\mathbb{R}$
totally orthogonal$G_x=\mathbb{T}^2$$R_0\simeq(\mathfrak{t}^2/\tt^2)^{\mathbb{T}^2}=\{0\}$
semi-orthogonal$G_x=U(1)$$R_0\simeq(\mathfrak{t}^2/\mathfrak{u}(1))^{U(1)}=\mathbb{R}$
generic$G_x=\bf{1}$$R_0\simeq\mathfrak{t}^2=\mathbb{R}^2$
[1]

James Montaldi, Amna Shaddad. Non-Abelian momentum polytopes for products of $ \mathbb{CP}^2 $. Journal of Geometric Mechanics, 2019, 11 (4) : 575-599. doi: 10.3934/jgm.2019029

[2]

Joshua Cape, Hans-Christian Herbig, Christopher Seaton. Symplectic reduction at zero angular momentum. Journal of Geometric Mechanics, 2016, 8 (1) : 13-34. doi: 10.3934/jgm.2016.8.13

[3]

Cristina García Pillado, Santos González, Victor Markov, Consuelo Martínez, Alexandr Nechaev. New examples of non-abelian group codes. Advances in Mathematics of Communications, 2016, 10 (1) : 1-10. doi: 10.3934/amc.2016.10.1

[4]

Sandra Carillo, Mauro Lo Schiavo, Cornelia Schiebold. Abelian versus non-Abelian Bäcklund charts: Some remarks. Evolution Equations & Control Theory, 2019, 8 (1) : 43-55. doi: 10.3934/eect.2019003

[5]

L. Búa, T. Mestdag, M. Salgado. Symmetry reduction, integrability and reconstruction in $k$-symplectic field theory. Journal of Geometric Mechanics, 2015, 7 (4) : 395-429. doi: 10.3934/jgm.2015.7.395

[6]

Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006

[7]

Mitsuru Shibayama. Non-integrability criterion for homogeneous Hamiltonian systems via blowing-up technique of singularities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3707-3719. doi: 10.3934/dcds.2015.35.3707

[8]

James Montaldi. Bifurcations of relative equilibria near zero momentum in Hamiltonian systems with spherical symmetry. Journal of Geometric Mechanics, 2014, 6 (2) : 237-260. doi: 10.3934/jgm.2014.6.237

[9]

C. D. Ahlbrandt, A. C. Peterson. A general reduction of order theorem for discrete linear symplectic systems. Conference Publications, 1998, 1998 (Special) : 7-18. doi: 10.3934/proc.1998.1998.7

[10]

Shaoyun Shi, Wenlei Li. Non-integrability of generalized Yang-Mills Hamiltonian system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1645-1655. doi: 10.3934/dcds.2013.33.1645

[11]

Chiara Leone, Anna Verde, Giovanni Pisante. Higher integrability results for non smooth parabolic systems: The subquadratic case. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 177-190. doi: 10.3934/dcdsb.2009.11.177

[12]

P. Balseiro, M. de León, Juan Carlos Marrero, D. Martín de Diego. The ubiquity of the symplectic Hamiltonian equations in mechanics. Journal of Geometric Mechanics, 2009, 1 (1) : 1-34. doi: 10.3934/jgm.2009.1.1

[13]

Guillaume Duval, Andrzej J. Maciejewski. Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4589-4615. doi: 10.3934/dcds.2014.34.4589

[14]

A. Ghose Choudhury, Partha Guha. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2465-2478. doi: 10.3934/dcdsb.2017126

[15]

Sandra Lucente, Eugenio Montefusco. Non-hamiltonian Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 761-770. doi: 10.3934/dcdss.2013.6.761

[16]

John Franks, Michael Handel. Some virtually abelian subgroups of the group of analytic symplectic diffeomorphisms of a surface. Journal of Modern Dynamics, 2013, 7 (3) : 369-394. doi: 10.3934/jmd.2013.7.369

[17]

Guillermo Dávila-Rascón, Yuri Vorobiev. Hamiltonian structures for projectable dynamics on symplectic fiber bundles. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1077-1088. doi: 10.3934/dcds.2013.33.1077

[18]

Morched Boughariou. Closed orbits of Hamiltonian systems on non-compact prescribed energy surfaces. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 603-616. doi: 10.3934/dcds.2003.9.603

[19]

Giuseppe Cordaro. Existence and location of periodic solutions to convex and non coercive Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 983-996. doi: 10.3934/dcds.2005.12.983

[20]

Marie-Claude Arnaud. A nondifferentiable essential irrational invariant curve for a $C^1$ symplectic twist map. Journal of Modern Dynamics, 2011, 5 (3) : 583-591. doi: 10.3934/jmd.2011.5.583

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (28)
  • HTML views (31)
  • Cited by (0)

Other articles
by authors

[Back to Top]