[1]
|
H. Aref, Point vortex dynamics: A classical mathematics playground, J. Math. Phys., 48 (2007), 065401, 23 pp.
doi: 10.1063/1.2425103.
|
[2]
|
H. Aref, P. K. Newton, M. A. Stremler, T. Tokieda and D. L. Vainchtein, Vortex crystals, Adv. in Appl. Mech., 39 (2003), 1-79.
|
[3]
|
S. Boatto and J. Koiller, Vortices on closed surfaces, Geometry, Mechanics and Dynamics: The Legacy of Jerry Marsden, Fields Inst. Commun., Springer, 73 (2015), 185-237.
doi: 10.1007/978-1-4939-2441-7_10.
|
[4]
|
A. V. Bolsinov, A. V. Borisov and I. S. Mamaev, Lie algebras in vortex dynamics and celestial mechanics. IV, Regular and Chaotic Dynamics, 4 (1999), 23-50.
doi: 10.1070/rd1999v004n01ABEH000097.
|
[5]
|
P.-L. Buono, F. Laurent-Polz and J. Montaldi, Symmetric Hamiltonian bifurcations, London Math. Soc. Lecture Note Ser., Geometric mechanics and symmetry, Cambridge Univ. Press, Cambridge, 306 (2005), 357-402.
doi: 10.1017/CBO9780511526367.007.
|
[6]
|
D. G. Dritschel and S. Boatto, The motion of point vortices on closed surfaces, Proc. R. Soc. A, 471 (2015), 20140890, 25 pp, http://dx.doi.org/10.1098/rspa.2014.0890.
doi: 10.1098/rspa.2014.0890.
|
[7]
|
J. J. Duistermaat and G. J. Heckman, On the variation in the cohomology of the sympleetic form of the reduced phase space, Invent. Math., 69 (1982), 259-268.
doi: 10.1007/BF01399506.
|
[8]
|
V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge University Press, Cambridge, 1984.
|
[9]
|
V. Guillemin and S. Sternberg, Birational equivalence in the symplectic category, Invent. Math., 97 (1989), 485-522.
doi: 10.1007/BF01388888.
|
[10]
|
R. Kidambi and P. K. Newton, Motion of three point vortices on a sphere, Physica D, 116 (1998), 143-175.
doi: 10.1016/S0167-2789(97)00236-4.
|
[11]
|
F. C. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical Notes, 31. Princeton University Press, Princeton, NJ, 1984.
doi: 10.1007/BF01145470.
|
[12]
|
F. C. Kirwan, The topology of reduced phase spaces of the motion of vortices on a sphere, Phy. D, 30 (1988), 99-123.
doi: 10.1016/0167-2789(88)90100-5.
|
[13]
|
F. Laurent-Polz, J. Montaldi and M. Roberts, Point vortices on the sphere: Stability of symmetric relative equilibria, J. Geom. Mech., 3 (2011), 439-486.
doi: 10.3934/jgm.2011.3.439.
|
[14]
|
C. C. Lim, Existence of Kolmogorov-Arnold-Moser tori in the phase-space of lattice vortex systems, Z. Angew. Math. Phys., 41 (1990), 227-244.
|
[15]
|
C. Lim, J. Montaldi and M. Roberts, Relative equilibria of point vortices on the sphere, Phys. D., 148 (2001), 97-135.
doi: 10.1016/S0167-2789(00)00167-6.
|
[16]
|
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathematics, 17. Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-2682-6.
|
[17]
|
J. Milnor, Morse Theory, Annals of Mathematics Studies, No. 51 Princeton University Press, Princeton, N.J. 1963.
|
[18]
|
J. Montaldi, Persistence and stability of relative equilibria, Nonlinearity, 10 (1997), 449-466.
doi: 10.1088/0951-7715/10/2/009.
|
[19]
|
J. Montaldi, Relative equilibria and conserved quantities in symmetric Hamiltonian systems, Peyresq Lectures on Nonlinear Phenomena, World Sci. Publ., River Edge, NJ, (2000), 239–280.
doi: 10.1142/9789812792778_0008.
|
[20]
|
J. Montaldi and C. Nava-Gaxiola, Point vortices on the hyperbolic plane, J. Math. Phys., 55 (2014), 102702, 14 pp, http://dx.doi.org/10.1063/1.4897210.
doi: 10.1063/1.4897210.
|
[21]
|
J. Montaldi and M. Roberts, Stratification of the momentum map, in preparation.
|
[22]
|
J. Montaldi, A. Soulière and T. Tokieda, Vortex dynamics on cylinders, SIAM J. on Appl. Dyn. Sys., 2 (2003), 417-430.
doi: 10.1137/S1111111102415569.
|
[23]
|
J. Montaldi and A. Shaddad, Non-Abelian momentum polytopes for products of $\mathbb{CP}^2$, J. Geom. Mechanics, (this volume).
|
[24]
|
J. Montaldi and T. Tokieda, Openness of momentum maps and persistence of extremal relative equilibria, Topology, 42 (2003), 833-844.
doi: 10.1016/S0040-9383(02)00047-2.
|
[25]
|
P. K. Newton, The $N$-Vortex Problem: Analytical Techniques, Applied Mathematical Sciences, 145. Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4684-9290-3.
|
[26]
|
J.-P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction, Progress in Mathematics, 222. Birkhäuser Boston, Inc., Boston, MA, 2004.
doi: 10.1007/978-1-4757-3811-7.
|
[27]
|
S. Pekarsky and J. E. Marsden, Point vortices on a sphere: Stability of relative equilibria, J. Math. Phys., 39 (1998), 5894-5907.
doi: 10.1063/1.532602.
|
[28]
|
A. R. Rodrigues, C. Castilho and J. Koiller, Vortex dynamics on a triaxial ellipsoid and Kimura's conjecture, J. Geom. Mech., 10 (2018), 189-208.
doi: 10.3934/jgm.2018007.
|
[29]
|
T. Sakajo and Y. Shimizu, Point vortex interactions on a toroidal surface, k Proc. R. Soc. A, 472 (2016), 20160271, 24 pp, http://dx.doi.org/10.1098/rspa.2016.0271.
doi: 10.1098/rspa.2016.0271.
|
[30]
|
A. Shaddad, The Classification and Dynamics of the Momentum Polytopes of the SU(3) Action on Points in the Complex Projective Plane with an Application to Point Vortices, Ph.D. thesis, University of Manchester, 2018.
|
[31]
|
R. Sjamaar, Convexity properties of the moment mapping re-examined, Advances in Math., 138 (1998), 46-91.
doi: 10.1006/aima.1998.1739.
|