December  2019, 11(4): 621-637. doi: 10.3934/jgm.2019031

Global well-posedness of a 3D MHD model in porous media

1. 

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

2. 

Department of Mathematics, Texas A & M University College Station, 3368 TAMU, College Station, TX 77843-3368, USA

3. 

Department of Mathematics & Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, KSA

* Corresponding author

This work is dedicated to Professor Darryl Holm on the occasion of his 70th birthday

Received  May 2018 Revised  March 2019 Published  November 2019

In this paper we show the global well-posedness of solutions to a three-dimensional magnetohydrodynamical (MHD) model in porous media. Compared to the classical MHD equations, our system involves a nonlinear damping term in the momentum equations due to the "Brinkman-Forcheimer-extended-Darcy" law of flow in porous media.

Citation: Edriss S. Titi, Saber Trabelsi. Global well-posedness of a 3D MHD model in porous media. Journal of Geometric Mechanics, 2019, 11 (4) : 621-637. doi: 10.3934/jgm.2019031
References:
[1]

S. Agmon, Lectures on Elliptic Boundary Value Problems, AMS Chelsea Publishing, Providence, RI, 2010. doi: 10.1090/chel/369.  Google Scholar

[2]

S. N. Antontsev and H. B. de Oliveira, The Navier-Stokes problem modified by an absorption term, Applicable Analysis, 89 (2010), 1805-1825.  doi: 10.1080/00036811.2010.495341.  Google Scholar

[3]

J. W. Barrett and W. B. Liu, Finite element approximation of the parabolic $p$-laplacian, SIAM Journal on Numerical Analysis, 31 (1994), 413-428.  doi: 10.1137/0731022.  Google Scholar

[4]

H. BessaihS. Trabelsi and H. Zorgati, Existence and uniqueness of global solutions for the modified anisotropic 3D Navier-Stokes equations, ESAIM: Mathematical Modelling and Numerical Analysis, 50 (2016), 1817-1823.  doi: 10.1051/m2an/2016008.  Google Scholar

[5]

X. J. Cai and Q. S. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping, Journal of Mathematical Analysis and Applications, 343 (2008), 799-809.  doi: 10.1016/j.jmaa.2008.01.041.  Google Scholar

[6]

C. S. Cao and J. H. Wu, Two regularity criteria for the 3D MHD equations, Journal of Differential Equations, 248 (2010), 2263-2274.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[7]

A. O. ÇelebiV. Kalantarov and D. U$\widetilde {\rm{g}}$gurlu, Continuous dependence for the convective Brinkman-Forchheimer equations, Applicable Analysis, 84 (2005), 877-888.  doi: 10.1080/00036810500148911.  Google Scholar

[8]

A. O. ÇelebiV. K. Kalantarov and D. Uǧurlu, On continuous dependence on coefficients of the Brinkman-Forchheimer equations, Applied mathematics letters, 19 (2006), 801-807.  doi: 10.1016/j.aml.2005.11.002.  Google Scholar

[9] P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988.   Google Scholar
[10]

J. É. J. Dupuit, Études Théoriques et Pratiques sur le Mouvement des eaux dans les Canaux Découverts et à Travers les Terrains Perméables: avec des Considérations Relatives au Régime des Grandes eaux, au Débouché à leur Donner, et à la Marche des Alluvions dans les Rivières à Fond Mobile, Dunod, 1863. Google Scholar

[11]

G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Archive for Rational Mechanics and Analysis, 46 (1972), 241-279.  doi: 10.1007/BF00250512.  Google Scholar

[12]

P. Forchheimer, Wasserbewegung durch boden, Zeitz. Ver. Duetch Ing., 45 (1901), 1782-1788.   Google Scholar

[13]

M. FourarG. RadillaR. Lenormand and C. Moyne, On the non-linear behavior of a laminar single-phase flow through two and three-dimensional porous media, Advances in Water Resources, 27 (2004), 669-677.   Google Scholar

[14]

C. He and Z. P. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, Journal of Differential Equations, 213 (2005), 235-254.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[15]

C. He and Z. P. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations, Journal of Functional Analysis, 227 (2005), 113-152.  doi: 10.1016/j.jfa.2005.06.009.  Google Scholar

[16]

C. Hsu and P. Cheng, Thermal dispersion in a porous medium, International Journal of Heat and Mass Transfer, 33 (1990), 1587-1597.   Google Scholar

[17]

V. Kalantarov and S. Zelik, Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities, Communications on Pure and Applied Analysis, 11 (2012), 2037-2054.  doi: 10.3934/cpaa.2012.11.2037.  Google Scholar

[18]

K. Kang and J. Lee, Interior regularity criteria for suitable weak solutions of the magnetohydrodynamic equations, Journal of Differential Equations, 247 (2009), 2310-2330.  doi: 10.1016/j.jde.2009.07.016.  Google Scholar

[19]

V. A. Liskevich and Y. A. Semenov, Some problems on markov semigroups, Schrödinger Operators, Markov Semigroups, Wavelet Analysis, Operator Algebras, Math. Top., Adv. Partial Differential Equations, Akademie Verlag, Berlin, 11 (1996), 163–217.  Google Scholar

[20]

Y. Liu and C. H. Lin, Structural stability for Brinkman-Forchheimer equations, Electronic Journal of Differential Equations, 2007 (2007), 8 pp.  Google Scholar

[21]

M. LouakedN. SeloulaS. Y. Sun and S. Trabelsi, A pseudocompressibility method for the incompressible Brinkman-Forchheimer equations, Differential and Integral Equations, 28 (2015), 361-382.   Google Scholar

[22]

M. LouakedN. Seloula and S. Trabelsi, Approximation of the unsteady Brinkman-Forchheimer equations by the pressure stabilization method, Numerical Methods for Partial Differential Equations, 33 (2017), 1949-1965.  doi: 10.1002/num.22173.  Google Scholar

[23]

P. A. MarkowichE. S. Titi and S. Trabelsi, Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model, Nonlinearity, 29 (2016), 1292-1328.  doi: 10.1088/0951-7715/29/4/1292.  Google Scholar

[24]

J. E. McClureW. G. Gray and C. T. Miller, Beyond anisotropy: Examining non-darcy flow in asymmetric porous media, Transp. Porous Media, 84 (2010), 535-548.  doi: 10.1007/s11242-009-9518-7.  Google Scholar

[25]

D. Nield, The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface, International Journal of Heat and Fluid Flow, 12 (1991), 269-272.   Google Scholar

[26]

Y. Ouyang and L.-e. Yang, A note on the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Analysis, 70 (2009), 2054-2059.  doi: 10.1016/j.na.2008.02.121.  Google Scholar

[27]

M. Panfilov and M. Fourar, Physical splitting of nonlinear effects in high-velocity stable flow through porous media, Advances in Water Resources, 29 (2006), 30-41.   Google Scholar

[28]

L. E. Payne and B. Straughan, Convergence and continuous dependence for the Brinkman-Forchheimer equations, Studies in Applied Mathematics, 102 (1999), 419-439.  doi: 10.1111/1467-9590.00116.  Google Scholar

[29]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Communications on Pure and Applied Mathematics, 36 (1983), 635-664.  doi: 10.1002/cpa.3160360506.  Google Scholar

[30]

B. Straughan, Stability and Wave Motion in Porous Media, Applied Mathematical Sciences, 165. Springer, New York, 2008.  Google Scholar

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[32]

S. Trabelsi, Global well-posedness of a 3D Forchheimer-Bénard convection model in porous media, Submitted, (2018). Google Scholar

[33]

D. Uǧurlu, On the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Analysis, 68 (2008), 1986-1992.  doi: 10.1016/j.na.2007.01.025.  Google Scholar

[34]

K. Vafai and R. Thiyagaraja, Analysis of flow and heat transfer at the interface region of a porous medium, International Journal of Heat and Mass Transfer, 30 (1987), 1391-1405.   Google Scholar

[35]

B. X. Wang and S. Y. Lin, Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation, Mathematical Methods in the Applied Sciences, 31 (2008), 1479-1495.  doi: 10.1002/mma.985.  Google Scholar

[36]

Y. C. YouC. D. Zhao and S. F. Zhou, The existence of uniform attractors for 3D Brinkman-Forchheimer equations, Discrete & Continuous Dynamical Systems-A, 32 (2012), 3787-3800.  doi: 10.3934/dcds.2012.32.3787.  Google Scholar

[37]

Z. J. ZhangD. X. ZhongS. J. Gao and S. L. Qiu, Fundamental Serrin type regularity criteria for 3D MHD fluid passing through the porous medium, Applicable Analysis, 96 (2017), 2130-2139.  doi: 10.2298/FIL1705287Z.  Google Scholar

[38]

Z. J. Zhang, Refined regularity criteria for the MHD system involving only two components of the solution, Appl. Anal., 96 (2017), 2130-2139.  doi: 10.1080/00036811.2016.1207245.  Google Scholar

[39]

Z. J. ZhangC. P. Wu and Z.-A. Yao, Remarks on global regularity for the 3D MHD system with damping, Applied Mathematics and Computation, 333 (2018), 1-7.  doi: 10.1016/j.amc.2018.03.047.  Google Scholar

show all references

References:
[1]

S. Agmon, Lectures on Elliptic Boundary Value Problems, AMS Chelsea Publishing, Providence, RI, 2010. doi: 10.1090/chel/369.  Google Scholar

[2]

S. N. Antontsev and H. B. de Oliveira, The Navier-Stokes problem modified by an absorption term, Applicable Analysis, 89 (2010), 1805-1825.  doi: 10.1080/00036811.2010.495341.  Google Scholar

[3]

J. W. Barrett and W. B. Liu, Finite element approximation of the parabolic $p$-laplacian, SIAM Journal on Numerical Analysis, 31 (1994), 413-428.  doi: 10.1137/0731022.  Google Scholar

[4]

H. BessaihS. Trabelsi and H. Zorgati, Existence and uniqueness of global solutions for the modified anisotropic 3D Navier-Stokes equations, ESAIM: Mathematical Modelling and Numerical Analysis, 50 (2016), 1817-1823.  doi: 10.1051/m2an/2016008.  Google Scholar

[5]

X. J. Cai and Q. S. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping, Journal of Mathematical Analysis and Applications, 343 (2008), 799-809.  doi: 10.1016/j.jmaa.2008.01.041.  Google Scholar

[6]

C. S. Cao and J. H. Wu, Two regularity criteria for the 3D MHD equations, Journal of Differential Equations, 248 (2010), 2263-2274.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[7]

A. O. ÇelebiV. Kalantarov and D. U$\widetilde {\rm{g}}$gurlu, Continuous dependence for the convective Brinkman-Forchheimer equations, Applicable Analysis, 84 (2005), 877-888.  doi: 10.1080/00036810500148911.  Google Scholar

[8]

A. O. ÇelebiV. K. Kalantarov and D. Uǧurlu, On continuous dependence on coefficients of the Brinkman-Forchheimer equations, Applied mathematics letters, 19 (2006), 801-807.  doi: 10.1016/j.aml.2005.11.002.  Google Scholar

[9] P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988.   Google Scholar
[10]

J. É. J. Dupuit, Études Théoriques et Pratiques sur le Mouvement des eaux dans les Canaux Découverts et à Travers les Terrains Perméables: avec des Considérations Relatives au Régime des Grandes eaux, au Débouché à leur Donner, et à la Marche des Alluvions dans les Rivières à Fond Mobile, Dunod, 1863. Google Scholar

[11]

G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Archive for Rational Mechanics and Analysis, 46 (1972), 241-279.  doi: 10.1007/BF00250512.  Google Scholar

[12]

P. Forchheimer, Wasserbewegung durch boden, Zeitz. Ver. Duetch Ing., 45 (1901), 1782-1788.   Google Scholar

[13]

M. FourarG. RadillaR. Lenormand and C. Moyne, On the non-linear behavior of a laminar single-phase flow through two and three-dimensional porous media, Advances in Water Resources, 27 (2004), 669-677.   Google Scholar

[14]

C. He and Z. P. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, Journal of Differential Equations, 213 (2005), 235-254.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[15]

C. He and Z. P. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations, Journal of Functional Analysis, 227 (2005), 113-152.  doi: 10.1016/j.jfa.2005.06.009.  Google Scholar

[16]

C. Hsu and P. Cheng, Thermal dispersion in a porous medium, International Journal of Heat and Mass Transfer, 33 (1990), 1587-1597.   Google Scholar

[17]

V. Kalantarov and S. Zelik, Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities, Communications on Pure and Applied Analysis, 11 (2012), 2037-2054.  doi: 10.3934/cpaa.2012.11.2037.  Google Scholar

[18]

K. Kang and J. Lee, Interior regularity criteria for suitable weak solutions of the magnetohydrodynamic equations, Journal of Differential Equations, 247 (2009), 2310-2330.  doi: 10.1016/j.jde.2009.07.016.  Google Scholar

[19]

V. A. Liskevich and Y. A. Semenov, Some problems on markov semigroups, Schrödinger Operators, Markov Semigroups, Wavelet Analysis, Operator Algebras, Math. Top., Adv. Partial Differential Equations, Akademie Verlag, Berlin, 11 (1996), 163–217.  Google Scholar

[20]

Y. Liu and C. H. Lin, Structural stability for Brinkman-Forchheimer equations, Electronic Journal of Differential Equations, 2007 (2007), 8 pp.  Google Scholar

[21]

M. LouakedN. SeloulaS. Y. Sun and S. Trabelsi, A pseudocompressibility method for the incompressible Brinkman-Forchheimer equations, Differential and Integral Equations, 28 (2015), 361-382.   Google Scholar

[22]

M. LouakedN. Seloula and S. Trabelsi, Approximation of the unsteady Brinkman-Forchheimer equations by the pressure stabilization method, Numerical Methods for Partial Differential Equations, 33 (2017), 1949-1965.  doi: 10.1002/num.22173.  Google Scholar

[23]

P. A. MarkowichE. S. Titi and S. Trabelsi, Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model, Nonlinearity, 29 (2016), 1292-1328.  doi: 10.1088/0951-7715/29/4/1292.  Google Scholar

[24]

J. E. McClureW. G. Gray and C. T. Miller, Beyond anisotropy: Examining non-darcy flow in asymmetric porous media, Transp. Porous Media, 84 (2010), 535-548.  doi: 10.1007/s11242-009-9518-7.  Google Scholar

[25]

D. Nield, The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface, International Journal of Heat and Fluid Flow, 12 (1991), 269-272.   Google Scholar

[26]

Y. Ouyang and L.-e. Yang, A note on the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Analysis, 70 (2009), 2054-2059.  doi: 10.1016/j.na.2008.02.121.  Google Scholar

[27]

M. Panfilov and M. Fourar, Physical splitting of nonlinear effects in high-velocity stable flow through porous media, Advances in Water Resources, 29 (2006), 30-41.   Google Scholar

[28]

L. E. Payne and B. Straughan, Convergence and continuous dependence for the Brinkman-Forchheimer equations, Studies in Applied Mathematics, 102 (1999), 419-439.  doi: 10.1111/1467-9590.00116.  Google Scholar

[29]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Communications on Pure and Applied Mathematics, 36 (1983), 635-664.  doi: 10.1002/cpa.3160360506.  Google Scholar

[30]

B. Straughan, Stability and Wave Motion in Porous Media, Applied Mathematical Sciences, 165. Springer, New York, 2008.  Google Scholar

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[32]

S. Trabelsi, Global well-posedness of a 3D Forchheimer-Bénard convection model in porous media, Submitted, (2018). Google Scholar

[33]

D. Uǧurlu, On the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Analysis, 68 (2008), 1986-1992.  doi: 10.1016/j.na.2007.01.025.  Google Scholar

[34]

K. Vafai and R. Thiyagaraja, Analysis of flow and heat transfer at the interface region of a porous medium, International Journal of Heat and Mass Transfer, 30 (1987), 1391-1405.   Google Scholar

[35]

B. X. Wang and S. Y. Lin, Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation, Mathematical Methods in the Applied Sciences, 31 (2008), 1479-1495.  doi: 10.1002/mma.985.  Google Scholar

[36]

Y. C. YouC. D. Zhao and S. F. Zhou, The existence of uniform attractors for 3D Brinkman-Forchheimer equations, Discrete & Continuous Dynamical Systems-A, 32 (2012), 3787-3800.  doi: 10.3934/dcds.2012.32.3787.  Google Scholar

[37]

Z. J. ZhangD. X. ZhongS. J. Gao and S. L. Qiu, Fundamental Serrin type regularity criteria for 3D MHD fluid passing through the porous medium, Applicable Analysis, 96 (2017), 2130-2139.  doi: 10.2298/FIL1705287Z.  Google Scholar

[38]

Z. J. Zhang, Refined regularity criteria for the MHD system involving only two components of the solution, Appl. Anal., 96 (2017), 2130-2139.  doi: 10.1080/00036811.2016.1207245.  Google Scholar

[39]

Z. J. ZhangC. P. Wu and Z.-A. Yao, Remarks on global regularity for the 3D MHD system with damping, Applied Mathematics and Computation, 333 (2018), 1-7.  doi: 10.1016/j.amc.2018.03.047.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[3]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[4]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[5]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[6]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[7]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[8]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[9]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[10]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[11]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[12]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[13]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[14]

Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351

[15]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279

[16]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[17]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[18]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[19]

Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265

[20]

Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (102)
  • HTML views (117)
  • Cited by (2)

Other articles
by authors

[Back to Top]