
-
Previous Article
De Donder form for second order gravity
- JGM Home
- This Issue
-
Next Article
Poisson brackets for the dynamically coupled system of a free boundary and a neutrally buoyant rigid body in a body-fixed frame
Rolling and no-slip bouncing in cylinders
1. | Department of Mathematics and Statistics, Mount Holyoke College, 50 College St, South Hadley, MA 01075, USA |
2. | Department of Mathematics, Tarleton State University, Box T-0470, Stephenville, TX 76401, USA |
3. | Department of Mathematics and Statistics, Washington University, Campus Box 1146, St. Louis, MO 63130, USA |
We compare a classical non-holonomic system—a sphere rolling against the inner surface of a vertical cylinder under gravity—with certain discrete dynamical systems called no-slip billiards in similar configurations. A feature of the former is that its height function is bounded and oscillates harmonically up and down. We investigate whether similar bounded behavior is observed in the no-slip billiard counterpart. For circular cylinders in dimension $ 3 $, no-slip billiards indeed have bounded orbits, and very closely approximate rolling motion, for a class of initial conditions we call transversal rolling impact. When this condition does not hold, trajectories undergo vertical oscillations superimposed to overall downward acceleration. Concerning different cross-sections, we show that no-slip billiards between two parallel hyperplanes in arbitrary dimensions are always bounded even under a constant force parallel to the plates; for general cylinders, when the orbit of the transverse system (a concept relying on a factorization of the motion into transversal and longitudinal components) has period two, the motion, under no forces, is generically not bounded. This commonly occurs in planar no-slip billiards.
References:
[1] |
A. M. Bloch, Nonholonomic Mechanics and Control, vol. 24 of Interdisciplinary Applied Mathematics, 2nd edition, Springer, New York, 2015.
doi: 10.1007/978-1-4939-3017-3. |
[2] |
A. V. Borisov, I. S. Mamaev and A. A. Kilin,
Rolling of a ball on a surface. New integrals and hierarchy of dynamics, Regul. Chaotic Dyn., 7 (2002), 201-219.
doi: 10.1070/RD2002v007n02ABEH000205. |
[3] |
D. S. Broomhead and E. Gutkin,
The dynamics of billiards with no-slip collisions, Phys. D, 67 (1993), 188-197.
doi: 10.1016/0167-2789(93)90205-F. |
[4] |
C. Cox and R. Feres, No-slip billiards in dimension two, in Dynamical Systems, Ergodic theory, and Probability: In Memory of Kolya Chernov, vol. 698 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2017, 91–110.
doi: 10.1090/conm/698/14032. |
[5] |
C. Cox, R. Feres and H.-K. Zhang,
Stability of periodic orbits in no-slip billiards, Nonlinearity, 31 (2018), 4443-4471.
doi: 10.1088/1361-6544/aacc43. |
[6] |
C. Cox and R. Feres,
Differential geometry of rigid bodies collisions and non-standard billiards, Discrete Contin. Dyn. Syst., 36 (2016), 6065-6099.
doi: 10.3934/dcds.2016065. |
[7] |
R. L. Garwin,
Kinematics of an ultraelastic rough ball, American Journal of Physics, 37 (1969), 88-92.
|
[8] |
M. Gualtieri, T. Tokieda, L. Advis-Gaete, B. Carry, E. Reffet and C. Guthmann,
Golfer's dilemma, American Journal of Physics, 74 (2006), 497-501.
|
[9] |
H. Larralde, F. Leyvraz and C. Mejía-Monasterio,
Transport properties of a modified Lorentz gas, J. Statist. Phys., 113 (2003), 197-231.
doi: 10.1023/A:1025726905782. |
[10] |
J. M. Lee, Introduction to Smooth Manifolds, vol. 218 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2003.
doi: 10.1007/978-0-387-21752-9. |
[11] |
C. Mejía-Monasterio, H. Larralde and F. Leyvraz,
Coupled normal heat and matter transport in a simple model system, Phys. Rev. Lett., 86 (2001), 5417-5420.
|
[12] |
J. I. Neǐmark and N. A. Fufaev, Dynamics of Nonholonomic Systems, vol. 33 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1972. |
[13] |
M. P. Wojtkowski,
The system of two spinning disks in the torus, Phys. D, 71 (1994), 430-439.
doi: 10.1016/0167-2789(94)90009-4. |
show all references
References:
[1] |
A. M. Bloch, Nonholonomic Mechanics and Control, vol. 24 of Interdisciplinary Applied Mathematics, 2nd edition, Springer, New York, 2015.
doi: 10.1007/978-1-4939-3017-3. |
[2] |
A. V. Borisov, I. S. Mamaev and A. A. Kilin,
Rolling of a ball on a surface. New integrals and hierarchy of dynamics, Regul. Chaotic Dyn., 7 (2002), 201-219.
doi: 10.1070/RD2002v007n02ABEH000205. |
[3] |
D. S. Broomhead and E. Gutkin,
The dynamics of billiards with no-slip collisions, Phys. D, 67 (1993), 188-197.
doi: 10.1016/0167-2789(93)90205-F. |
[4] |
C. Cox and R. Feres, No-slip billiards in dimension two, in Dynamical Systems, Ergodic theory, and Probability: In Memory of Kolya Chernov, vol. 698 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2017, 91–110.
doi: 10.1090/conm/698/14032. |
[5] |
C. Cox, R. Feres and H.-K. Zhang,
Stability of periodic orbits in no-slip billiards, Nonlinearity, 31 (2018), 4443-4471.
doi: 10.1088/1361-6544/aacc43. |
[6] |
C. Cox and R. Feres,
Differential geometry of rigid bodies collisions and non-standard billiards, Discrete Contin. Dyn. Syst., 36 (2016), 6065-6099.
doi: 10.3934/dcds.2016065. |
[7] |
R. L. Garwin,
Kinematics of an ultraelastic rough ball, American Journal of Physics, 37 (1969), 88-92.
|
[8] |
M. Gualtieri, T. Tokieda, L. Advis-Gaete, B. Carry, E. Reffet and C. Guthmann,
Golfer's dilemma, American Journal of Physics, 74 (2006), 497-501.
|
[9] |
H. Larralde, F. Leyvraz and C. Mejía-Monasterio,
Transport properties of a modified Lorentz gas, J. Statist. Phys., 113 (2003), 197-231.
doi: 10.1023/A:1025726905782. |
[10] |
J. M. Lee, Introduction to Smooth Manifolds, vol. 218 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2003.
doi: 10.1007/978-0-387-21752-9. |
[11] |
C. Mejía-Monasterio, H. Larralde and F. Leyvraz,
Coupled normal heat and matter transport in a simple model system, Phys. Rev. Lett., 86 (2001), 5417-5420.
|
[12] |
J. I. Neǐmark and N. A. Fufaev, Dynamics of Nonholonomic Systems, vol. 33 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1972. |
[13] |
M. P. Wojtkowski,
The system of two spinning disks in the torus, Phys. D, 71 (1994), 430-439.
doi: 10.1016/0167-2789(94)90009-4. |













[1] |
Christopher Cox, Renato Feres. Differential geometry of rigid bodies collisions and non-standard billiards. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6065-6099. doi: 10.3934/dcds.2016065 |
[2] |
E. Minguzzi. A unifying mechanical equation with applications to non-holonomic constraints and dissipative phenomena. Journal of Geometric Mechanics, 2015, 7 (4) : 473-482. doi: 10.3934/jgm.2015.7.473 |
[3] |
Panayotis G. Kevrekidis, Vakhtang Putkaradze, Zoi Rapti. Non-holonomic constraints and their impact on discretizations of Klein-Gordon lattice dynamical models. Conference Publications, 2015, 2015 (special) : 696-704. doi: 10.3934/proc.2015.0696 |
[4] |
Vladimir Dragović, Milena Radnović. Pseudo-integrable billiards and arithmetic dynamics. Journal of Modern Dynamics, 2014, 8 (1) : 109-132. doi: 10.3934/jmd.2014.8.109 |
[5] |
W. Patrick Hooper, Richard Evan Schwartz. Billiards in nearly isosceles triangles. Journal of Modern Dynamics, 2009, 3 (2) : 159-231. doi: 10.3934/jmd.2009.3.159 |
[6] |
Serge Tabachnikov. Birkhoff billiards are insecure. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 1035-1040. doi: 10.3934/dcds.2009.23.1035 |
[7] |
Simon Castle, Norbert Peyerimhoff, Karl Friedrich Siburg. Billiards in ideal hyperbolic polygons. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 893-908. doi: 10.3934/dcds.2011.29.893 |
[8] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[9] |
Richard Evan Schwartz. Outer billiards and the pinwheel map. Journal of Modern Dynamics, 2011, 5 (2) : 255-283. doi: 10.3934/jmd.2011.5.255 |
[10] |
Mickaël Kourganoff. Uniform hyperbolicity in nonflat billiards. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1145-1160. doi: 10.3934/dcds.2018048 |
[11] |
Giancarlo Benettin, Massimiliano Guzzo, Anatoly Neishtadt. A new problem of adiabatic invariance related to the rigid body dynamics. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 959-975. doi: 10.3934/dcds.2008.21.959 |
[12] |
Hong-Kun Zhang. Free path of billiards with flat points. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4445-4466. doi: 10.3934/dcds.2012.32.4445 |
[13] |
Giovanni Panti. Billiards on pythagorean triples and their Minkowski functions. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4341-4378. doi: 10.3934/dcds.2020183 |
[14] |
W. Patrick Hooper, Richard Evan Schwartz. Erratum: Billiards in nearly isosceles triangles. Journal of Modern Dynamics, 2014, 8 (1) : 133-137. doi: 10.3934/jmd.2014.8.133 |
[15] |
Richard Evan Schwartz. Unbounded orbits for outer billiards I. Journal of Modern Dynamics, 2007, 1 (3) : 371-424. doi: 10.3934/jmd.2007.1.371 |
[16] |
Giovanni Forni, Carlos Matheus. Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. Journal of Modern Dynamics, 2014, 8 (3&4) : 271-436. doi: 10.3934/jmd.2014.8.271 |
[17] |
Reimund Rautmann. Lower and upper bounds to the change of vorticity by transition from slip- to no-slip fluid flow. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 1101-1109. doi: 10.3934/dcdss.2014.7.1101 |
[18] |
Pedro Duarte, José Pedro GaivÃo, Mohammad Soufi. Hyperbolic billiards on polytopes with contracting reflection laws. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3079-3109. doi: 10.3934/dcds.2017132 |
[19] |
Daniel Genin. Research announcement: Boundedness of orbits for trapezoidal outer billiards. Electronic Research Announcements, 2008, 15: 71-78. doi: 10.3934/era.2008.15.71 |
[20] |
Misha Bialy. On Totally integrable magnetic billiards on constant curvature surface. Electronic Research Announcements, 2012, 19: 112-119. doi: 10.3934/era.2012.19.112 |
2020 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]