-
Previous Article
Conservative replicator and Lotka-Volterra equations in the context of Dirac\big-isotropic structures
- JGM Home
- This Issue
- Next Article
Invariant structures on Lie groups
Departamento de Matemáticas Fundamentales, Universidad Nacional de Educación a Distancia, Paseo Senda del Rey 9, 28040 Madrid, Spain |
We approach with geometrical tools the contactization and symplectization of filiform structures and define Hamiltonian structures and momentum mappings on Lie groups.
References:
[1] |
D. V. Alekseevskiǐ,
Contact homogeneous spaces, Funktsional. Anal. i Prilozhen., 24 (1990), 74-75.
doi: 10.1007/BF01077337. |
[2] |
J. M. Ancochea-Bermúdez and M. Goze,
Classification des algèbres de Lie filiformes de dimension $8$, Arch. Math., 50 (1988), 511-525.
doi: 10.1007/BF01193621. |
[3] |
O. Baues and V. Cortés, Symplectic Lie groups: Symplectic reduction, Lagrangian extensions, and existence of Lagrangian normal subgroups, Astérisque, 379 (2016), ⅵ+90 pp. |
[4] |
W. M. Boothby and H. C. Wang,
On contact manifolds, Ann. of Math. (2), 68 (1958), 721-734.
doi: 10.2307/1970165. |
[5] |
M. Bordemann, A. Medina and A. Ouadfel,
Le group affine comme variété symplectique, Tohoku Math. J. (2), 45 (1993), 423-436.
doi: 10.2748/tmj/1178225893. |
[6] |
L. Boza, F. J. Echarte and J. Núñez,
Classification of complex filiform Lie algebras of dimension 10, Algebras Groups Geom., 11 (1994), 253-276.
|
[7] |
C. Chevalley and S. Eilenberg,
Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 63 (1948), 85-124.
doi: 10.1090/S0002-9947-1948-0024908-8. |
[8] |
B. Y. Chu,
Symplectic homogeneous spaces, Trans. Amer. Math. Soc., 197 (1974), 145-159.
doi: 10.1090/S0002-9947-1974-0342642-7. |
[9] |
J.-M. Dardié and A. Medina,
Double extension symplectique d'un groupe de Lie symplectique, Adv. Math., 117 (1996), 208-227.
doi: 10.1006/aima.1996.0009. |
[10] |
A. Diatta,
Left invariant contact structures on Lie groups, Differential Geom. Appl., 26 (2008), 544-552.
doi: 10.1016/j.difgeo.2008.04.001. |
[11] |
J. R. Gómez and F. J. Echarte,
Classification of complex filiform nilpotent Lie algebras of dimension $9$, Rend. Sem. Fac. Sci. Univ. Cagliari, 61 (1991), 21-29.
|
[12] |
J. R. Gómez, A. Jiménez-Merchán and Y. Khakimdjanov,
Symplectic structures on the filiform Lie algebras, J. Pure Appl. Algebra, 156 (2001), 15-31.
doi: 10.1016/S0022-4049(99)90120-2. |
[13] |
J. W. Gray,
Some global properties of contact structures, Ann. of Math. (2), 69 (1959), 421-450.
doi: 10.2307/1970192. |
[14] |
M. L. Gromov,
Stable mappings of foliations into manifolds, Izv. Akad. Nauk SSSR Ser. Mat., 33 (1969), 707-734.
|
[15] |
J.-I. Hano,
On Kaehlerian homogeneous spaces of unimodular Lie groups, Amer. J. Math., 79 (1957), 885-900.
doi: 10.2307/2372440. |
[16] |
J. Helmstetter,
Radical d'une algèbre symétrique à gauche, Ann. Inst. Fourier (Grenoble), 29 (1979), 17-35.
doi: 10.5802/aif.764. |
[17] |
Y. Khakimdjanov, M. Goze and A. Medina,
Symplectic or contact structures on Lie Groups, Differential Geom. Appl., 21 (2004), 41-54.
doi: 10.1016/j.difgeo.2003.12.006. |
[18] |
M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 158. North-Holland Publishing Co., Amsterdam, 1989. |
[19] |
A. Lichnerowicz and A. Medina,
On Lie groups with left-invariant symplectic or Kählerian structures, Lett. Math. Phys., 16 (1988), 225-235.
doi: 10.1007/BF00398959. |
[20] |
R. Lutz,
Quelques remarques historiques et prospectives sur la géométrie de contact, Rend. Sem. Fac. Sci. Univ. Caligari, 58 (1988), 361-393.
|
[21] |
A. Medina,
Structure of symplectic Lie groups and momentum map, Tohoku Math. J. (2), 67 (2015), 419-431.
doi: 10.2748/tmj/1446818559. |
[22] |
M. Vergne,
Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la variété des algèbres de Lie nilpotentes, Bull. Soc. Math. France, 98 (1970), 81-116.
|
show all references
References:
[1] |
D. V. Alekseevskiǐ,
Contact homogeneous spaces, Funktsional. Anal. i Prilozhen., 24 (1990), 74-75.
doi: 10.1007/BF01077337. |
[2] |
J. M. Ancochea-Bermúdez and M. Goze,
Classification des algèbres de Lie filiformes de dimension $8$, Arch. Math., 50 (1988), 511-525.
doi: 10.1007/BF01193621. |
[3] |
O. Baues and V. Cortés, Symplectic Lie groups: Symplectic reduction, Lagrangian extensions, and existence of Lagrangian normal subgroups, Astérisque, 379 (2016), ⅵ+90 pp. |
[4] |
W. M. Boothby and H. C. Wang,
On contact manifolds, Ann. of Math. (2), 68 (1958), 721-734.
doi: 10.2307/1970165. |
[5] |
M. Bordemann, A. Medina and A. Ouadfel,
Le group affine comme variété symplectique, Tohoku Math. J. (2), 45 (1993), 423-436.
doi: 10.2748/tmj/1178225893. |
[6] |
L. Boza, F. J. Echarte and J. Núñez,
Classification of complex filiform Lie algebras of dimension 10, Algebras Groups Geom., 11 (1994), 253-276.
|
[7] |
C. Chevalley and S. Eilenberg,
Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 63 (1948), 85-124.
doi: 10.1090/S0002-9947-1948-0024908-8. |
[8] |
B. Y. Chu,
Symplectic homogeneous spaces, Trans. Amer. Math. Soc., 197 (1974), 145-159.
doi: 10.1090/S0002-9947-1974-0342642-7. |
[9] |
J.-M. Dardié and A. Medina,
Double extension symplectique d'un groupe de Lie symplectique, Adv. Math., 117 (1996), 208-227.
doi: 10.1006/aima.1996.0009. |
[10] |
A. Diatta,
Left invariant contact structures on Lie groups, Differential Geom. Appl., 26 (2008), 544-552.
doi: 10.1016/j.difgeo.2008.04.001. |
[11] |
J. R. Gómez and F. J. Echarte,
Classification of complex filiform nilpotent Lie algebras of dimension $9$, Rend. Sem. Fac. Sci. Univ. Cagliari, 61 (1991), 21-29.
|
[12] |
J. R. Gómez, A. Jiménez-Merchán and Y. Khakimdjanov,
Symplectic structures on the filiform Lie algebras, J. Pure Appl. Algebra, 156 (2001), 15-31.
doi: 10.1016/S0022-4049(99)90120-2. |
[13] |
J. W. Gray,
Some global properties of contact structures, Ann. of Math. (2), 69 (1959), 421-450.
doi: 10.2307/1970192. |
[14] |
M. L. Gromov,
Stable mappings of foliations into manifolds, Izv. Akad. Nauk SSSR Ser. Mat., 33 (1969), 707-734.
|
[15] |
J.-I. Hano,
On Kaehlerian homogeneous spaces of unimodular Lie groups, Amer. J. Math., 79 (1957), 885-900.
doi: 10.2307/2372440. |
[16] |
J. Helmstetter,
Radical d'une algèbre symétrique à gauche, Ann. Inst. Fourier (Grenoble), 29 (1979), 17-35.
doi: 10.5802/aif.764. |
[17] |
Y. Khakimdjanov, M. Goze and A. Medina,
Symplectic or contact structures on Lie Groups, Differential Geom. Appl., 21 (2004), 41-54.
doi: 10.1016/j.difgeo.2003.12.006. |
[18] |
M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 158. North-Holland Publishing Co., Amsterdam, 1989. |
[19] |
A. Lichnerowicz and A. Medina,
On Lie groups with left-invariant symplectic or Kählerian structures, Lett. Math. Phys., 16 (1988), 225-235.
doi: 10.1007/BF00398959. |
[20] |
R. Lutz,
Quelques remarques historiques et prospectives sur la géométrie de contact, Rend. Sem. Fac. Sci. Univ. Caligari, 58 (1988), 361-393.
|
[21] |
A. Medina,
Structure of symplectic Lie groups and momentum map, Tohoku Math. J. (2), 67 (2015), 419-431.
doi: 10.2748/tmj/1446818559. |
[22] |
M. Vergne,
Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la variété des algèbres de Lie nilpotentes, Bull. Soc. Math. France, 98 (1970), 81-116.
|
[1] |
Guillermo Dávila-Rascón, Yuri Vorobiev. Hamiltonian structures for projectable dynamics on symplectic fiber bundles. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1077-1088. doi: 10.3934/dcds.2013.33.1077 |
[2] |
Daniel Guan. Classification of compact homogeneous spaces with invariant symplectic structures. Electronic Research Announcements, 1997, 3: 52-54. |
[3] |
William D. Kalies, Konstantin Mischaikow, Robert C.A.M. Vandervorst. Lattice structures for attractors I. Journal of Computational Dynamics, 2014, 1 (2) : 307-338. doi: 10.3934/jcd.2014.1.307 |
[4] |
Paulo Antunes, Joana M. Nunes da Costa. Hypersymplectic structures on Courant algebroids. Journal of Geometric Mechanics, 2015, 7 (3) : 255-280. doi: 10.3934/jgm.2015.7.255 |
[5] |
Javier de la Cruz, Michael Kiermaier, Alfred Wassermann, Wolfgang Willems. Algebraic structures of MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 499-510. doi: 10.3934/amc.2016021 |
[6] |
Francesco Maddalena, Danilo Percivale, Franco Tomarelli. Adhesive flexible material structures. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 553-574. doi: 10.3934/dcdsb.2012.17.553 |
[7] |
V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153 |
[8] |
Dmitry Tamarkin. Quantization of Poisson structures on R^2. Electronic Research Announcements, 1997, 3: 119-120. |
[9] |
Matthias Liero, Alexander Mielke, Mark A. Peletier, D. R. Michiel Renger. On microscopic origins of generalized gradient structures. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 1-35. doi: 10.3934/dcdss.2017001 |
[10] |
Partha Guha, Indranil Mukherjee. Hierarchies and Hamiltonian structures of the Nonlinear Schrödinger family using geometric and spectral techniques. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1677-1695. doi: 10.3934/dcdsb.2018287 |
[11] |
A. Ghose Choudhury, Partha Guha. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2465-2478. doi: 10.3934/dcdsb.2017126 |
[12] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[13] |
S. E. Pastukhova. Asymptotic analysis in elasticity problems on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (3) : 577-604. doi: 10.3934/nhm.2009.4.577 |
[14] |
Valentina Casarino, Paolo Ciatti, Silvia Secco. Product structures and fractional integration along curves in the space. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 619-635. doi: 10.3934/dcdss.2013.6.619 |
[15] |
Jiaquan Zhan, Fanyong Meng. Cores and optimal fuzzy communication structures of fuzzy games. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1187-1198. doi: 10.3934/dcdss.2019082 |
[16] |
Giovanni Rastelli, Manuele Santoprete. Canonoid and Poissonoid transformations, symmetries and biHamiltonian structures. Journal of Geometric Mechanics, 2015, 7 (4) : 483-515. doi: 10.3934/jgm.2015.7.483 |
[17] |
Nicola Sansonetto, Daniele Sepe. Twisted isotropic realisations of twisted Poisson structures. Journal of Geometric Mechanics, 2013, 5 (2) : 233-256. doi: 10.3934/jgm.2013.5.233 |
[18] |
Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67 |
[19] |
Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 461-478. doi: 10.3934/dcdss.2013.6.461 |
[20] |
Jian Hao, Zhilin Li, Sharon R. Lubkin. An augmented immersed interface method for moving structures with mass. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1175-1184. doi: 10.3934/dcdsb.2012.17.1175 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]