doi: 10.3934/jgm.2020008

Conservative replicator and Lotka-Volterra equations in the context of Dirac\big-isotropic structures

Departamento de Matemática, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil

Received  August 2019 Published  March 2020

We introduce an algorithm to find possible constants of motion for a given replicator equation. The algorithm is inspired by Dirac geometry and a Hamiltonian description for the replicator equations with such constants of motion, up to a time re-parametrization, is provided using Dirac$ \backslash $big-isotropic structures. Using the equivalence between replicator and Lotka-Volterra (LV) equations, the set of conservative LV equations is enlarged. Our approach generalizes the well-known use of gauge transformations to skew-symmetrize the interaction matrix of a LV system. In the case of predator-prey model, our method does allow interaction between different predators and between different preys.

Citation: Hassan Najafi Alishah. Conservative replicator and Lotka-Volterra equations in the context of Dirac\big-isotropic structures. Journal of Geometric Mechanics, doi: 10.3934/jgm.2020008
References:
[1]

H. N. Alishah and R. de la Llave, Tracing KAM tori in presymplectic dynamical systems, J. Dynam. Differential Equations, 24 (2012), 685-711.  doi: 10.1007/s10884-012-9265-2.  Google Scholar

[2]

H. N. Alishah and P. Duarte, Hamiltonian evolutionary games, J. Dyn. Games, 2 (2015), 33-49.  doi: 10.3934/jdg.2015.2.33.  Google Scholar

[3]

H. N. Alishah and J. Lopes Dias, Realization of tangent perturbations in discrete and continuous time conservative systems, Discrete Contin. Dyn. Syst., 34 (2014), 5359-5374.  doi: 10.3934/dcds.2014.34.5359.  Google Scholar

[4]

P. Antoniou and A. Pitsillides, Congestion control in autonomous decentralized networks based on the Lotka-Volterra competition model, Artificial Neural Networks-ICANN 2009. ICANN 2009, (2009), 986–996. doi: 10.1007/978-3-642-04277-5_99.  Google Scholar

[5]

L. Brenig, Complete factorisation and analytic solutions of generalized Lotka-Volterra equations, Phys. Lett. A, 133 (1988), 378-382.  doi: 10.1016/0375-9601(88)90920-6.  Google Scholar

[6]

H. Bursztyn, A brief introduction to Dirac manifolds, Geometric and Topological Methods for Quantum Field Theory, Cambridge Univ. Press, Cambridge, (2013), 4–38. doi: 10.1017/CBO9781139208642.002.  Google Scholar

[7]

T. J. Courant, Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), 631-661.  doi: 10.1090/S0002-9947-1990-0998124-1.  Google Scholar

[8]

T. Courant and A. Weinstein, Beyond Poisson structures, Action Hamiltoniennes de Groupes, Troisième Théorème de Lie (Lyon 1988), Travaux en Cours, Hermann, Paris, 27 (1988), 39–49, Available from: https://math.berkeley.edu/~alanw/Beyond.pdf.  Google Scholar

[9]

P. DuarteR. L. Fernandes and W. M. Oliva, Dynamics of the attractor in the Lotka-Volterra equations, J. Differential Equations, 149 (1998), 143-189.  doi: 10.1006/jdeq.1998.3443.  Google Scholar

[10]

B. Hernández-Bermejo and V. Fairén, Lotka-Volterra representation of general nonlinear systems, Math. Biosci., 140 (1997), 1-32.  doi: 10.1016/S0025-5564(96)00131-9.  Google Scholar

[11] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, 1998.  doi: 10.1017/CBO9781139173179.  Google Scholar
[12]

M. Jotz and T. S. Ratiu, Dirac structures, nonholonomic systems and reduction, Rep. Math. Phys., 69 (2012), 5-56.  doi: 10.1016/S0034-4877(12)60016-0.  Google Scholar

[13]

A. J. Lotka, Elements of mathematical biology, Dover Publications, Inc., New York, N. Y., (1958).  Google Scholar

[14]

S. Smale, On the differential equations of species in competition, J. Math. Biol., 3 (1976), 5-7.  doi: 10.1007/BF00307854.  Google Scholar

[15]

I. Vaisman, Isotropic subbundles of $TM\oplus T^*M$, Int. J. Geom. Methods Mod. Phys., 4 (2007), 487-516.  doi: 10.1142/S0219887807002156.  Google Scholar

[16]

I. Vaisman, Weak-Hamiltonian dynamical systems, J. Math. Phys., 48 (2007), 082903, 13 pp. doi: 10.1063/1.2769145.  Google Scholar

[17]

A. van der Schaft, Port-Hamiltonian systems: An introductory survey, International Congress of Mathematicians, Eur. Math. Soc., Zürich, 3 (2006), 1339-1365.   Google Scholar

[18]

V. Volterra, Leçons sur la Théorie Mathématique de la Lutte Pour la vie, Les Grands Classiques Gauthier-Villars, Éditions Jacques Gabay, Sceaux, 1990.  Google Scholar

[19]

H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics. I. Implicit Lagrangian systems, J. Geom. Phys., 57 (2006), 133-156.  doi: 10.1016/j.geomphys.2006.02.009.  Google Scholar

show all references

References:
[1]

H. N. Alishah and R. de la Llave, Tracing KAM tori in presymplectic dynamical systems, J. Dynam. Differential Equations, 24 (2012), 685-711.  doi: 10.1007/s10884-012-9265-2.  Google Scholar

[2]

H. N. Alishah and P. Duarte, Hamiltonian evolutionary games, J. Dyn. Games, 2 (2015), 33-49.  doi: 10.3934/jdg.2015.2.33.  Google Scholar

[3]

H. N. Alishah and J. Lopes Dias, Realization of tangent perturbations in discrete and continuous time conservative systems, Discrete Contin. Dyn. Syst., 34 (2014), 5359-5374.  doi: 10.3934/dcds.2014.34.5359.  Google Scholar

[4]

P. Antoniou and A. Pitsillides, Congestion control in autonomous decentralized networks based on the Lotka-Volterra competition model, Artificial Neural Networks-ICANN 2009. ICANN 2009, (2009), 986–996. doi: 10.1007/978-3-642-04277-5_99.  Google Scholar

[5]

L. Brenig, Complete factorisation and analytic solutions of generalized Lotka-Volterra equations, Phys. Lett. A, 133 (1988), 378-382.  doi: 10.1016/0375-9601(88)90920-6.  Google Scholar

[6]

H. Bursztyn, A brief introduction to Dirac manifolds, Geometric and Topological Methods for Quantum Field Theory, Cambridge Univ. Press, Cambridge, (2013), 4–38. doi: 10.1017/CBO9781139208642.002.  Google Scholar

[7]

T. J. Courant, Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), 631-661.  doi: 10.1090/S0002-9947-1990-0998124-1.  Google Scholar

[8]

T. Courant and A. Weinstein, Beyond Poisson structures, Action Hamiltoniennes de Groupes, Troisième Théorème de Lie (Lyon 1988), Travaux en Cours, Hermann, Paris, 27 (1988), 39–49, Available from: https://math.berkeley.edu/~alanw/Beyond.pdf.  Google Scholar

[9]

P. DuarteR. L. Fernandes and W. M. Oliva, Dynamics of the attractor in the Lotka-Volterra equations, J. Differential Equations, 149 (1998), 143-189.  doi: 10.1006/jdeq.1998.3443.  Google Scholar

[10]

B. Hernández-Bermejo and V. Fairén, Lotka-Volterra representation of general nonlinear systems, Math. Biosci., 140 (1997), 1-32.  doi: 10.1016/S0025-5564(96)00131-9.  Google Scholar

[11] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, 1998.  doi: 10.1017/CBO9781139173179.  Google Scholar
[12]

M. Jotz and T. S. Ratiu, Dirac structures, nonholonomic systems and reduction, Rep. Math. Phys., 69 (2012), 5-56.  doi: 10.1016/S0034-4877(12)60016-0.  Google Scholar

[13]

A. J. Lotka, Elements of mathematical biology, Dover Publications, Inc., New York, N. Y., (1958).  Google Scholar

[14]

S. Smale, On the differential equations of species in competition, J. Math. Biol., 3 (1976), 5-7.  doi: 10.1007/BF00307854.  Google Scholar

[15]

I. Vaisman, Isotropic subbundles of $TM\oplus T^*M$, Int. J. Geom. Methods Mod. Phys., 4 (2007), 487-516.  doi: 10.1142/S0219887807002156.  Google Scholar

[16]

I. Vaisman, Weak-Hamiltonian dynamical systems, J. Math. Phys., 48 (2007), 082903, 13 pp. doi: 10.1063/1.2769145.  Google Scholar

[17]

A. van der Schaft, Port-Hamiltonian systems: An introductory survey, International Congress of Mathematicians, Eur. Math. Soc., Zürich, 3 (2006), 1339-1365.   Google Scholar

[18]

V. Volterra, Leçons sur la Théorie Mathématique de la Lutte Pour la vie, Les Grands Classiques Gauthier-Villars, Éditions Jacques Gabay, Sceaux, 1990.  Google Scholar

[19]

H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics. I. Implicit Lagrangian systems, J. Geom. Phys., 57 (2006), 133-156.  doi: 10.1016/j.geomphys.2006.02.009.  Google Scholar

[1]

Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147

[2]

Yoshiaki Muroya. A Lotka-Volterra system with patch structure (related to a multi-group SI epidemic model). Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 999-1008. doi: 10.3934/dcdss.2015.8.999

[3]

Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135

[4]

Hélène Leman, Sylvie Méléard, Sepideh Mirrahimi. Influence of a spatial structure on the long time behavior of a competitive Lotka-Volterra type system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 469-493. doi: 10.3934/dcdsb.2015.20.469

[5]

Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059

[6]

Juan Luis García Guirao, Marek Lampart. Transitivity of a Lotka-Volterra map. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 75-82. doi: 10.3934/dcdsb.2008.9.75

[7]

Xiao He, Sining Zheng. Protection zone in a modified Lotka-Volterra model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2027-2038. doi: 10.3934/dcdsb.2015.20.2027

[8]

Gunter Neumann, Stefan Schuster. Modeling the rock - scissors - paper game between bacteriocin producing bacteria by Lotka-Volterra equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 207-228. doi: 10.3934/dcdsb.2007.8.207

[9]

Tongren Ding, Hai Huang, Fabio Zanolin. A priori bounds and periodic solutions for a class of planar systems with applications to Lotka-Volterra equations. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 103-117. doi: 10.3934/dcds.1995.1.103

[10]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[11]

Ting-Hui Yang, Weinian Zhang, Kaijen Cheng. Global dynamics of three species omnivory models with Lotka-Volterra interaction. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2867-2881. doi: 10.3934/dcdsb.2016077

[12]

Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650

[13]

Shaohua Chen, Runzhang Xu, Hongtao Yang. Global and blowup solutions for general Lotka-Volterra systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1757-1768. doi: 10.3934/cpaa.2016012

[14]

Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953

[15]

Linping Peng, Zhaosheng Feng, Changjian Liu. Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4807-4826. doi: 10.3934/dcds.2014.34.4807

[16]

Suqing Lin, Zhengyi Lu. Permanence for two-species Lotka-Volterra systems with delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 137-144. doi: 10.3934/mbe.2006.3.137

[17]

Rui Wang, Xiaoyue Li, Denis S. Mukama. On stochastic multi-group Lotka-Volterra ecosystems with regime switching. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3499-3528. doi: 10.3934/dcdsb.2017177

[18]

Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559

[19]

Guichen Lu, Zhengyi Lu. Permanence for two-species Lotka-Volterra cooperative systems with delays. Mathematical Biosciences & Engineering, 2008, 5 (3) : 477-484. doi: 10.3934/mbe.2008.5.477

[20]

Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043

2018 Impact Factor: 0.525

Article outline

[Back to Top]