A complete geometric classification of symmetries of autonomous Hamiltonian systems is established; explaining how to obtain their associated conserved quantities in all cases. In particular, first we review well-known results and properties about the symmetries of the Hamiltonian and of the symplectic form and then some new kinds of non-symplectic symmetries and their conserved quantities are introduced and studied.
Citation: |
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics, Second edition, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978.
doi: 10.1090/chel/364.![]() ![]() ![]() |
[2] |
A. Arancibia and M. S. Plyushchay, Chiral asymmetry in propagation of soliton defects in crystalline backgrounds, Phys. Rev. D, 92 (2015), 105009, 20 pp.
doi: 10.1103/PhysRevD.92.105009.![]() ![]() ![]() |
[3] |
V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4757-2063-1.![]() ![]() ![]() |
[4] |
P. Birtea and R. M. Tudoran, Non-Noether conservation laws, Int. J. Geom. Methods Mod. Phys., 9 (2012), 1220004, 5 pp.
doi: 10.1142/S0219887812200046.![]() ![]() ![]() |
[5] |
A. V. Bolsinov, Compatible Poisson brackets on Lie algebras and the completeness of families of functions in involution, Math. USSR-Izvestiya, 38 (1992), 69-90.
doi: 10.1070/IM1992v038n01ABEH002187.![]() ![]() ![]() |
[6] |
A. V. Bolsinov and A. V. Borisov, Compatible Poisson brackets on Lie algebras, Math. Notes, 72 (2002), 10-30.
doi: 10.1023/A:1019856702638.![]() ![]() ![]() |
[7] |
J. F. Cariñena and L. A. Ibort, Non-Noether constants of motion, J. Phys. A, 16 (1983), 1-7.
doi: 10.1088/0305-4470/16/1/010.![]() ![]() ![]() |
[8] |
J. F. Cariñena, G. Marmo and M. F. Rañada, Non-symplectic symmetries and bi-Hamiltonian structures of the rational harmonic oscillator, J. Phys. A, 35 (2002), L679–L686.
doi: 10.1088/0305-4470/35/47/101.![]() ![]() ![]() |
[9] |
G. Chavchanidze, Non-Noether symmetries and their influence on phase space geometry, J. Geom. Phys., 48 (2003), 190-202.
doi: 10.1016/S0393-0440(03)00040-8.![]() ![]() ![]() |
[10] |
G. Chavchanidze, Non-Noether symmetries in Hamiltonian dynamical systems, Mem. Diff. Eqs. Math. Phys., 36 (2005), 81-134.
![]() ![]() |
[11] |
M. Crampin, Constants of the motion in Lagrangian mechanics, Int. J. Theor. Phys., 16 (1977), 741-754.
doi: 10.1007/BF01807231.![]() ![]() ![]() |
[12] |
M. Crampin, A note on non-Noether constants of motion, Phys. Lett. A, 95 (1983), 209-212.
doi: 10.1016/0375-9601(83)90605-9.![]() ![]() ![]() |
[13] |
M. Crampin, W. Sarlet and G. Thompson, Bi-differential calculi and bi-Hamiltonian systems, J. Phys. A, 33 (2000), L177–180.
doi: 10.1088/0305-4470/33/20/101.![]() ![]() ![]() |
[14] |
A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Reduction of presymplectic manifolds with symmetry, Rev. Math. Phys., 11 (1999), 1209-1247.
doi: 10.1142/S0129055X99000386.![]() ![]() ![]() |
[15] |
A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Multivector field formulation of Hamiltonian field theories: Equations and symmetries, J. Phys. A: Math. Gen., 32 (1999), 8461-8484.
doi: 10.1088/0305-4470/32/48/309.![]() ![]() ![]() |
[16] |
G. Falqui, F. Magri and M. Pedroni, Bihamiltonian geometry and separation of variables for Toda lattices, J. Nonlinear Math. Phys., 8 (2001), suppl., 118–127.
doi: 10.2991/jnmp.2001.8.s.21.![]() ![]() ![]() |
[17] |
J. Gaset, P. D. Prieto-Martínez and N. Román-Roy, Variational principles and symmetries on fibered multisymplectic manifolds, Comm. Math., 24 (2016), 137-152.
doi: 10.1515/cm-2016-0010.![]() ![]() ![]() |
[18] |
B. Jovanović, Noether symmetries and integrability in Hamiltonian time-dependent mechanics, Theor. App. Mechanics, 43 (2016), 255-273.
doi: 10.2298/TAM160121009J.![]() ![]() |
[19] |
P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics, Mathematics and its Applications, 35. D. Reidel Publishing Co., Dordrecht, 1987.
doi: 10.1007/978-94-009-3807-6.![]() ![]() ![]() |
[20] |
C. López, E. Martínez and M. F. Rañada, Dynamical symmetries, non-Cartan symmetries and superintegrability of the $n$-dimensional harmonic oscillator, J. Phys. A, 32 (1999), 1241-1249.
doi: 10.1088/0305-4470/32/7/013.![]() ![]() ![]() |
[21] |
F. A. Lunev, Analog of Noether's theorem for non-Noether and nonlocal symmetries, Theor. Math. Phys., 84 (1990), 816-820.
doi: 10.1007/BF01017679.![]() ![]() ![]() |
[22] |
M. Lutzky, Origin of non-Noether invariants, Phys. Lett. A, 75 (1980), 8-10.
doi: 10.1016/0375-9601(79)90258-5.![]() ![]() ![]() |
[23] |
M. Lutzky, New classes of conserved quantities associated with non-Noether symmetries, J. Phys. A, 15 (1982), L87–L91.
doi: 10.1088/0305-4470/15/3/001.![]() ![]() ![]() |
[24] |
C. M. Marle and J. Nunes da Costa, Master symmetries and bi-Hamiltonian structures for the relativistic Toda lattice, J. Phys. A, 30 (1997), 7551-7556.
doi: 10.1088/0305-4470/30/21/025.![]() ![]() ![]() |
[25] |
G. Marmo and N. Mukunda, Symmetries and constants of the motion in the Lagrangian formalism on $TQ$: Beyond point transformations, Nuovo Cim B, 92 (1986), 1-12.
doi: 10.1007/BF02729691.![]() ![]() ![]() |
[26] |
G. Marmo, E. J. Saletan, A. Simoni and B. Vitale, Dynamical Systems, a Differential Geometric Approach to Symmetry and Reduction, John Wiley & Sons, Ltd., Chichester, 1985.
![]() ![]() |
[27] |
J. C. Marrero, N. Román-Roy, M. Salgado and S. Vilariño, Reduction of polysymplectic manifolds, J. Phys. A, 48 (2015), 055206, 43 pp.
doi: 10.1088/1751-8113/48/5/055206.![]() ![]() ![]() |
[28] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Second edition, Texts in Applied Mathematics, 17. Springer-Verlag, New York, 1999.
doi: 10.1007/978-0-387-21792-5.![]() ![]() ![]() |
[29] |
J. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Math. Phys., 5 (1974), 121-130.
doi: 10.1016/0034-4877(74)90021-4.![]() ![]() ![]() |
[30] |
J. Mateos-Guilarte and M. S. Plyushchay, Perfectly invisible $\mathcal{PT}$-symmetric zero-gap systems, conformal field theoretical kinks, and exotic nonlinear supersymmetry, J. High Energy Phys., 2017 (2017), 061, front matter+35 pp.
doi: 10.1007/JHEP12(2017)061.![]() ![]() ![]() |
[31] |
M. F. Rañada, Integrable three-particle systems, hidden symmetries and deformation of the Calogero-Moser system, J. Math. Phys., 36 (1995), 3541-3558.
doi: 10.1063/1.530980.![]() ![]() ![]() |
[32] |
M. F. Rañada, Superintegrable $n = 2$ systems, quadratic constants of motion, and potential of Drach, J. Math. Phys., 38 (1997), 4165-4178.
doi: 10.1063/1.532089.![]() ![]() ![]() |
[33] |
M. F. Rañada, Dynamical symmetries, bi-Hamiltonian structures and superintegrable $n = 2$ systems, J. Math. Phys., 41 (2000), 2121-2134.
doi: 10.1063/1.533230.![]() ![]() ![]() |
[34] |
N. Román-Roy, M. Salgado and S. Vilariño, Higher-order Noether symmetries in $k$-symplectic Hamiltonian field theory, Int. J. Geom. Methods Mod. Phys., 10 (2013), 1360013, 9 pp.
doi: 10.1142/S021988781360013X.![]() ![]() ![]() |
[35] |
G. Rosensteel and J. P. Draayer, Symmetry algebra of the anisotropic harmonic oscillator with commensurate frequencies, J. Phys. A, 22 (1989), 1323-1327.
doi: 10.1088/0305-4470/22/9/021.![]() ![]() ![]() |
[36] |
W. Sarlet and F. Cantrijn, Higher-order Noether symmetries and constants of the motion, J. Phys. A, 14 (1981), 479-492.
doi: 10.1088/0305-4470/14/2/023.![]() ![]() ![]() |
[37] |
W. Sarlet and F. Cantrijn, Generalizations of Noether's theorem in classical mechanics, SIAM Rev., 23 (1981), 467-494.
doi: 10.1137/1023098.![]() ![]() ![]() |
[38] |
Yu. B. Suris, On the bi-Hamiltonian structure of Toda and relativistic Toda lattices, Phys. Lett. A, 180 (1993), 419-429.
doi: 10.1016/0375-9601(93)90293-9.![]() ![]() ![]() |